Explanation:
Given:
- Length of the Rectangle is 3 more than its width.
- Perimeter of rectangle is 54 m
To Find:
- Length and Breadth
- Area of the rectangle
Solution:
We are given length of a rectangle is 3 more than its width
Let's assume:
- Breadth of the rectangle = x
- Length of the rectangle = x + 3
We know that,
![\dashrightarrow \sf \: \: Perimeter_((rectangle)) = 2(L + B)](https://img.qammunity.org/2023/formulas/mathematics/college/zu7hkborx2t56iuzkkyjpht7hjjexavq7r.png)
![\dashrightarrow \sf \: \: 54 = 2(x + x + 3)](https://img.qammunity.org/2023/formulas/mathematics/college/3cx8oqudoma76cyil5k9v8i1v8z4rvbees.png)
![\dashrightarrow \sf \: \: 54 = 2(2x + 3)](https://img.qammunity.org/2023/formulas/mathematics/college/ipzivhceav907kqdb2c9e9kvb46u6i1gc2.png)
![\dashrightarrow \sf \: \: (54)/(2) = 2x + 3](https://img.qammunity.org/2023/formulas/mathematics/college/p1u32225ton7eo1nwzf7tln3220pk311k7.png)
![\dashrightarrow \sf \: \: 27 = 2x + 3](https://img.qammunity.org/2023/formulas/mathematics/college/22cskkpuqkemgcs2f035uvj6aakkzwtram.png)
![\dashrightarrow \sf \: \: 27 - 3 = 2x](https://img.qammunity.org/2023/formulas/mathematics/college/5i5rqhrney4wsum16yzeqdrcdzahcfsapq.png)
![\dashrightarrow \sf \: \: 24 = 2x](https://img.qammunity.org/2023/formulas/mathematics/college/4cuoy7xi7mctpa85fgw76r6hq4lr7qjl0w.png)
![\dashrightarrow \sf \: \: (24)/(2) = x](https://img.qammunity.org/2023/formulas/mathematics/college/2vkmbbjcf6u8pemzdhx5uetjj8l1kwc5hx.png)
![\dashrightarrow \: \: {\underline{\boxed{\pink{\pmb{\mathfrak{12 = x}}}}}}](https://img.qammunity.org/2023/formulas/mathematics/college/r0pirdk2m8g5augmita8p7t3nez4gna4p4.png)
Hence,
- Breadth of rectangle = x = 12 m
- Length of rectangle = 3 + x = 15 m
Now, Finding its area:
![\dashrightarrow \: \: { \sf{ Area_((rectangle)) = L * B }} \: \\](https://img.qammunity.org/2023/formulas/mathematics/college/2c8lxh5ukbczoa916hbukmcdb9v6q2gx8a.png)
![\dashrightarrow \sf \: \: Area = 12 * 15](https://img.qammunity.org/2023/formulas/mathematics/college/sd7gt5imvbkkenw10yjz7rg32b5s2brwbk.png)
![\dashrightarrow \sf \: \: {\underline{\boxed{\pink{\pmb{\mathfrak{Area = 180 \: {m}^(2)}}}}}}](https://img.qammunity.org/2023/formulas/mathematics/college/mqo73b9sqwaetntc464mlwmwwrfk9u4k62.png)
Hence,
- Length and breadth of rectangle is 12 m and 15 m
- Area of the rectangle is 180 m²