Find the critical points of
:
![(\partial f)/(\partial x)=-2x=0\implies x=0](https://img.qammunity.org/2021/formulas/mathematics/college/mzpjobmke328fazix0nbtc03slqhhj5l7s.png)
![(\partial f)/(\partial y)=y-4y^3=y(1-4y^2)=0\implies y=0\text{ or }y=\pm\frac12](https://img.qammunity.org/2021/formulas/mathematics/college/j3e2cg61ezr89ywiy1qcaniaosau9dwuz9.png)
All three points lie within
, and
takes on values of
![\begin{cases}f(0,0)=4\\f\left(0,-\frac12\right)=(65)/(16)\\f\left(0,\frac12\right)=(65)/(16)\end{cases}](https://img.qammunity.org/2021/formulas/mathematics/college/q3qkldrwmmgmueaerc65lod7oydyb4fkfe.png)
Now check for extrema on the boundary of
. Convert to polar coordinates:
![f(x,y)=f(\cos t,\sin t)=g(t)=4-\cos^2-\sin^4t+\frac12\sin^2t=3+\frac32\sin^2t-\sin^4t](https://img.qammunity.org/2021/formulas/mathematics/college/pvognhoikct10qyni1lbtwjacyq1eo19a5.png)
Find the critical points of
:
![(\mathrm dg)/(\mathrm dt)=3\sin t\cos t-4\sin^3t\cos t=\sin t\cos t(3-4\sin^2t)=0](https://img.qammunity.org/2021/formulas/mathematics/college/3jnl7ghxa8xqy4vq0851w165ivd9zdzcti.png)
![\implies\sin t=0\text{ or }\cos t=0\text{ or }\sin t=\pm\frac{\sqrt3}2](https://img.qammunity.org/2021/formulas/mathematics/college/rofbya561p9yjkb00kpgc1rqg7i3soolmx.png)
![\implies t=n\pi\text{ or }t=\frac{(2n+1)\pi}2\text{ or }\pm\frac\pi3+2n\pi](https://img.qammunity.org/2021/formulas/mathematics/college/ygzih5xonr3ljspo53lu8expjrjfb92yqv.png)
where
is any integer. There are some redundant critical points, so we'll just consider
, which gives
![t=0\text{ or }t=\frac\pi3\text{ or }t=\frac\pi2\text{ or }t=\pi\text{ or }t=\frac{3\pi}2\text{ or }t=\frac{5\pi}3](https://img.qammunity.org/2021/formulas/mathematics/college/l28fw1umezh9eruk97w6y4qfjuucb9d3pw.png)
which gives values of
![\begin{cases}g(0)=3\\g\left(\frac\pi3\right)=(57)/(16)\\g\left(\frac\pi2\right)=\frac72\\g(\pi)=3\\g\left(\frac{3\pi}2\right)=\frac72\\g\left(\frac{5\pi}3\right)=(57)/(16)\end{cases}](https://img.qammunity.org/2021/formulas/mathematics/college/2zm0bm4thmsvmglvmkiofedzr9c3gxx6bs.png)
So altogether,
has an absolute maximum of 65/16 at the points (0, -1/2) and (0, 1/2), and an absolute minimum of 3 at (-1, 0).