78.5k views
5 votes
Find the absolute extrema for f(x,y)=4-x^2-y^4+1/2y^2 over the closed disk D:x^2+y^2 is less than or equal to 1

1 Answer

5 votes

Find the critical points of
f(x,y):


(\partial f)/(\partial x)=-2x=0\implies x=0


(\partial f)/(\partial y)=y-4y^3=y(1-4y^2)=0\implies y=0\text{ or }y=\pm\frac12

All three points lie within
D, and
f takes on values of


\begin{cases}f(0,0)=4\\f\left(0,-\frac12\right)=(65)/(16)\\f\left(0,\frac12\right)=(65)/(16)\end{cases}

Now check for extrema on the boundary of
D. Convert to polar coordinates:


f(x,y)=f(\cos t,\sin t)=g(t)=4-\cos^2-\sin^4t+\frac12\sin^2t=3+\frac32\sin^2t-\sin^4t

Find the critical points of
g(t):


(\mathrm dg)/(\mathrm dt)=3\sin t\cos t-4\sin^3t\cos t=\sin t\cos t(3-4\sin^2t)=0


\implies\sin t=0\text{ or }\cos t=0\text{ or }\sin t=\pm\frac{\sqrt3}2


\implies t=n\pi\text{ or }t=\frac{(2n+1)\pi}2\text{ or }\pm\frac\pi3+2n\pi

where
n is any integer. There are some redundant critical points, so we'll just consider
0\le t< 2\pi, which gives


t=0\text{ or }t=\frac\pi3\text{ or }t=\frac\pi2\text{ or }t=\pi\text{ or }t=\frac{3\pi}2\text{ or }t=\frac{5\pi}3

which gives values of


\begin{cases}g(0)=3\\g\left(\frac\pi3\right)=(57)/(16)\\g\left(\frac\pi2\right)=\frac72\\g(\pi)=3\\g\left(\frac{3\pi}2\right)=\frac72\\g\left(\frac{5\pi}3\right)=(57)/(16)\end{cases}

So altogether,
f(x,y) has an absolute maximum of 65/16 at the points (0, -1/2) and (0, 1/2), and an absolute minimum of 3 at (-1, 0).

User Kannetkeifer
by
5.5k points