78.5k views
5 votes
Find the absolute extrema for f(x,y)=4-x^2-y^4+1/2y^2 over the closed disk D:x^2+y^2 is less than or equal to 1

1 Answer

5 votes

Find the critical points of
f(x,y):


(\partial f)/(\partial x)=-2x=0\implies x=0


(\partial f)/(\partial y)=y-4y^3=y(1-4y^2)=0\implies y=0\text{ or }y=\pm\frac12

All three points lie within
D, and
f takes on values of


\begin{cases}f(0,0)=4\\f\left(0,-\frac12\right)=(65)/(16)\\f\left(0,\frac12\right)=(65)/(16)\end{cases}

Now check for extrema on the boundary of
D. Convert to polar coordinates:


f(x,y)=f(\cos t,\sin t)=g(t)=4-\cos^2-\sin^4t+\frac12\sin^2t=3+\frac32\sin^2t-\sin^4t

Find the critical points of
g(t):


(\mathrm dg)/(\mathrm dt)=3\sin t\cos t-4\sin^3t\cos t=\sin t\cos t(3-4\sin^2t)=0


\implies\sin t=0\text{ or }\cos t=0\text{ or }\sin t=\pm\frac{\sqrt3}2


\implies t=n\pi\text{ or }t=\frac{(2n+1)\pi}2\text{ or }\pm\frac\pi3+2n\pi

where
n is any integer. There are some redundant critical points, so we'll just consider
0\le t< 2\pi, which gives


t=0\text{ or }t=\frac\pi3\text{ or }t=\frac\pi2\text{ or }t=\pi\text{ or }t=\frac{3\pi}2\text{ or }t=\frac{5\pi}3

which gives values of


\begin{cases}g(0)=3\\g\left(\frac\pi3\right)=(57)/(16)\\g\left(\frac\pi2\right)=\frac72\\g(\pi)=3\\g\left(\frac{3\pi}2\right)=\frac72\\g\left(\frac{5\pi}3\right)=(57)/(16)\end{cases}

So altogether,
f(x,y) has an absolute maximum of 65/16 at the points (0, -1/2) and (0, 1/2), and an absolute minimum of 3 at (-1, 0).

User Kannetkeifer
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories