140k views
5 votes
If a diode at 300°K with a constant bias current of 100μA has a forward voltage of 700mV across it, what will the voltage drop across this same diode be if the bias current is increased to 1mA? g

User Zyrg
by
7.7k points

1 Answer

7 votes

Answer:

the voltage drop across this same diode will be 760 mV

Step-by-step explanation:

Given that:

Temperature T = 300°K

current
I_1 = 100 μA

current
I_2 = 1 mA

forward voltage
V_r = 700 mV = 0.7 V

To objective is to find the voltage drop across this same diode if the bias current is increased to 1mA.

Using the formula:


I = I_o \begin {pmatrix} e^{(V_r)/(nv_T)-1} \end {pmatrix}


I_1 = I_o \begin {pmatrix} e^{(V_r)/(nv_T)-1} \end {pmatrix}

where;


V_r = 0.7


I_1 = I_o \begin {pmatrix} e^{(0.7)/(nv_T)-1} \end {pmatrix}


I_2 = I_o \begin {pmatrix} e^{(V_r')/(nv_T)-1} \end {pmatrix}


(I_1)/(I_2) = \frac{ I_o \begin {pmatrix} e^{(0.7)/(nv_T)-1} \end {pmatrix} }{ I_o \begin {pmatrix} e^{(V_r')/(nv_T)-1} \end {pmatrix} }


(100 \ \mu A)/(1 \ mA) = \frac{ \begin {pmatrix} e^{(0.7)/(nv_T)-1} \end {pmatrix} }{ \begin {pmatrix} e^{(V_r')/(nv_T)-1} \end {pmatrix} }

Suppose n = 1


V_T = (T)/(11600) \\ \\ V_T = (300)/(11600) \\ \\ V_T = 25. 86 \ mV

Then;


e^{(V_r')/(nv_T)-1} = 10 \begin {pmatrix} e ^{\frac{ 0.7} { nV_T} -1} \end {pmatrix}


e^{(V_r')/(nv_T)-1} = 10 \begin {pmatrix} e ^{\frac{ 0.7} { 25.86} -1} \end {pmatrix}


e^{(V_r')/(nv_T)-1} = 5.699 * 10^(12)


{e^(V_r')/(nv_T)} = 5.7 * 10^(12)


{(V_r')/(nv_T)} =log_{e ^{5.7 * 10^(12)}}


{(V_r')/(nv_T)} =29.37


V_r'=29.37 * nV_T


V_r'=29.37 * 25.86


V_r'=759.5 \ mV


Vr' \simeq 760 mV

Thus, the voltage drop across this same diode will be 760 mV

User Kalyan Pvs
by
9.0k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.