120k views
0 votes
"A satellite requires 88.5 min to orbit Earth once. Assume a circular orbit. 1) What is the circumference of the satellites orbit

User Pburka
by
5.0k points

1 Answer

1 vote

Answer:

circumference of the satellite orbit = 4.13 × 10⁷ m

Step-by-step explanation:

Given that:

the time period T = 88.5 min = 88.5 × 60 = 5310 sec

The mass of the earth
M_e = 5.98 × 10²⁴ kg

if the radius of orbit is r,

Then,


(V^2)/(r) = (GM_e)/(r^2)


{V^2} = (GM_e r)/(r^2)


{V^2} = (GM_e )/(r)


{V} =\sqrt{ (GM_e )/(r)}

Similarly :


T = \sqrt{\frac{ 2 \pi r} {V} }

where;
{V} =\sqrt{ (GM_e )/(r)}

Then:


T = {\frac{ 2 \pi r^(3/2)} {\sqrt{ {GM_e }} }


5310= {\frac{ 2 \pi r^(3/2)} {\sqrt{ {6.674* 10^(-11) * 5.98 * 10^(24) }} }


5310= {\frac{ 2 \pi r^(3/2)} {\sqrt{ 3.991052 * 10^(14) }}


5310= {\frac{ 2 \pi r^(3/2)} {19977617.48}


5310 * 19977617.48= 2 \pi r^(3/2)}


1.06081149 * 10^(11)= 2 \pi r^(3/2)}


(1.06081149 * 10^(11))/(2 \pi)= r^(3/2)}


r^(3/2)} = (1.06081149 * 10^(11))/(2 \pi)


r^(3/2)} = 1.68833392 * 10^(10)


r= (1.68833392 * 10^(10))^(2/3)}


r= 2565.38^2

r = 6579225 m

The circumference of the satellites orbit can now be determined by using the formula:

circumference = 2π r

circumference = 2π × 6579225 m

circumference = 41338489.85 m

circumference of the satellite orbit = 4.13 × 10⁷ m

User James Carr
by
4.5k points