Answer:
the rate of heat loss from the duct to the attic space = 1315.44 W
the pressure difference between the inlet and outlet sections of the duct = 7.0045 N/m²
Explanation:
We know that properties of air 80⁰C and 1atm (from appendix table) are;
density p = 0.9994 kg/m³, Specifice heat Cp = 1008 J/kg.⁰C
Thermal conductivity k = 0.02953 W/m.⁰C, Prandtl number Pr = 0.7154,
Kinematic viscosity v = 2.097 × 10⁻⁵ m²/s
haven gotten that, we calculate the hydraulic diameter of square duct
Dh = 4Ac / P { Ac = is cross sectional area of duct and P = perimeter}
now we substitute a² for Ac and 4a for P ( we know from the question that a = 0.2 m)
Dh = 4a² / 4a
Dh = 4(0.2)² / 4(0.2)
Dh = 0.2 m
Now we calculate the average velocity of air
Vₐ = Vˣ / Ac { vˣ = volume flow rate of air}
Vₐ = Vˣ / a² { Ac = a² }, we know that a = 0.2m₂, Vˣ = 0.15 m³
Vₐ = 0.15 / (0.2)²
Vₐ = 3.75 m/s
Next we calculate the Reynolds number
Re = Vₐ Dh / V
Re = (3.75 × 0.2) / 2.097× 10⁻⁵
Re = 35765.379
The Reynolds number IS GREATER than 10,000
so the flow is turbulent and entry length in this case is nearly 10 times the hydraulic diameter
Lh ≈ Lt ≈ 10D
= 10 × 0.2
= 2m
As this length is quite small when compared to the total of tube, we assume fully developed flow for the entire tube length.
Now we calculate the Nusselt number from this relation;
Nu = 0.023 Re⁰'⁸ Pr⁰'³
so we substitute for Re and Pr
Nu = 0.023(35765.379)⁰'⁸ (0.7154)⁰'³
Nu = 91.4
Now calculate the convective heat transfer coefficient
h = Nu × K/ Dh
we substitute
h = 91.4 × 0.02953 W/m.°C / 0.2 m
h = 13.5 W/m².°C
We calculate the surface area of the square duct
Aₓ = 4aL { L= length of duct}
we substitute
Aₓ = 4 × 0.2 × 8
Aₓ = 6.4 m²
Mass flow rate of air
m = pVˣ
we substitute again ( from our initials)
m = 0.9994 kg/m₃ × 0.15 m³/s
m= 0.150 kg/s
We calculate the exit temperature of the air from the duct
Te = Ts - (Ts -Ti) exp ( - hAₓ / mCp)
we know that
Ts = 60°C , Ti = 80°C, h = 13.5 W/m².°C , Aₓ = 6.4m², m = 0.150 kg/s , Cp = 1008 J/kg.°C
we substitute
Te = 60 - (60-80) exp(- ((13.5 × 6.4)/(0.15 × 1008))
Te = 71.3°
Now we calculate the rate of heat loss from the duct.
Q = mCp ( Ti -Te )
we substitute again
Q = 0.150 × 1008 × ( 80 - 71.3 )
Q = 1315.44 W
Next we calculate the estimated friction factors by using Haaland equation
1/√f = - 1.8log₁₀ [ 6.9/Re + (E/D)/3.7)¹'¹¹]
we know that E/D = relative roughness = 10⁻³
we substitute
so
1/√f = - 1.8log₁₀ [ (6.9/35765.379) + ( 10⁻³/3.7)¹'¹¹]
1/√f = - 1.8log₁₀ { 0.000192924 + 0.00010947}
1/√f = - 1.8log₁₀ 0.000302324
√f = 1/6.334
f = (1/6.334)²
f = 0.02492
We calculate the pressure difference between inlet and outlet sections of the duct
ΔPl = fLPVa² / Dh × 2
ΔPl = {0.02492 × 8 × 0.9994 × (3.75)²} / 0.2 × 2
ΔPl = 2.8018 / 0.4
ΔPl = 7.0045 N/m²
Therefore pressure deference is 7.0045 N/m²