204k views
4 votes
Find x.
A. 21(route)2
B. 7
C.21(route)3/2
D. 21(route)2/2

Find x. A. 21(route)2 B. 7 C.21(route)3/2 D. 21(route)2/2-example-1
User DiffracteD
by
7.8k points

1 Answer

3 votes

Answer:

Option (D)

Explanation:

By applying Sine rule in the right ΔABD,

Sin(A) =
\frac{\text{Opposite side}}{\text{Hypotenuse}}

Sin(60)° =
\frac{\text{BD}}{\text{AB}}


(√(3))/(2)=\frac{\text{BD}}{7√(3)}

BD =
7√(3)* (√(3) )/(2)

=
(21)/(2)

Now by applying Cosine rule in the right ΔBDC,

Cos(45)° =
\frac{\text{Adjacent side}}{\text{Hypotenuse}}


(1)/(√(2))=((21)/(2))/(x)

x =
(21)/(2)* √(2)

x =
(21√(2))/(2)

Therefore, Option (D) is the correct option.

Find x. A. 21(route)2 B. 7 C.21(route)3/2 D. 21(route)2/2-example-1
User Jmagin
by
8.7k points

No related questions found