Answer:
![\large \boxed{\text{a)188.4 g; b) 98.67 $\, \%$}}](https://img.qammunity.org/2021/formulas/chemistry/high-school/5hjeluc6aep4fmde1dqd8pteixz83y02us.png)
Step-by-step explanation:
We will need a balanced chemical equation with masses and molar masses, so, let's gather all the information in one place.
Mᵣ: 98.08 392.18
2Cr + 3H₂SO₄ ⟶ Cr₂(SO₄)₃ + 3H₂
To solve the stoichiometry problem, you must
- Use the molar mass of H₂SO₄ to convert the mass of H₂SO₄ to moles of H₂SO₄
- Use the molar ratio to convert moles of H₂SO₄ to moles of Cr₂(SO₄)₃
- Use the molar mass of Cr₂(SO₄)₃ to convert moles of Cr₂(SO₄)₃ to mass of Cr₂(SO₄)₃
a) Mass of Cr₂(SO₄)₃
(i) Mass of pure H₂SO₄
![\text{Mass of pure} = \text{165 g impure} * \frac{\text{85.67 g pure} }{\text{100 g impure}} = \text{141.36 g pure}](https://img.qammunity.org/2021/formulas/chemistry/high-school/zkee4vfj74o9lyctwlbt2sj8tmxta2llof.png)
(ii) Moles of H₂SO₄
![\text{Moles of H$_(2)$SO}_(4) = \text{141.36 g H$_(2)$SO}_(4) * \frac{\text{1 mol H$_(2)$SO}_(4)}{\text{98.08 g H$_(2)$SO}_(4)} = \text{1.441 mol H$_(2)$SO}_(4)](https://img.qammunity.org/2021/formulas/chemistry/high-school/wdkuo77gedtluwfdgmx8nkgwjdo04gavek.png)
(iii) Moles of Cr₂(SO₄)₃
The molar ratio is 1 mol Cr₂(SO₄)₃:3 mol H₂SO₄
![\text{Moles of Cr$_(2)$(SO$_(4)$)}_(3) = \text{1.441 mol H$_(2)$SO}_(4) * \frac{\text{1 mol Cr$_(2)$(SO$_(4)$)}_(3)}{\text{3 mol H$_(2)$SO}_(4)} = \text{0.4804 mol Cr$_(2)$(SO$_(4)$)}_(3)](https://img.qammunity.org/2021/formulas/chemistry/high-school/qaum147ha1timlx6er2cjpb2fzq48aqo3l.png)
(iv) Mass of Cr₂(SO₄)₃
![\text{Mass of Cr$_(2)$(SO$_(4)$)}_(3) = \text{0.4804 mol Cr$_(2)$(SO$_(4)$)}_(3) * \frac{\text{392.18 g Cr$_(2)$(SO$_(4)$)}_(3)}{\text{1 mol Cr$_(2)$(SO$_(4)$)}_(3)} = \textbf{188.4 g Cr$_(2)$(SO$_(4)$)}_(3)\\\text{The mass of Cr$_(2)$(SO$_(4)$)$_(3)$ formed is $\large \boxed{\textbf{188.4 g}}$}](https://img.qammunity.org/2021/formulas/chemistry/high-school/yt82pg9mdngqnaws8lxspnhbucjmcbcika.png)
b) Percentage yield
It is impossible to get a yield of 485.9 g. I will assume you meant 185.9 g.
![\text{Percentage yield} = \frac{\text{Actual yield}}{\text{Theoretical yield}} * 100 \, \% = \frac{\text{185.9 g}}{\text{188.4 g}} * 100 \, \% = \mathbf{98.67 \, \%}\\\\\text{The percentage yield is $\large \boxed{\mathbf{98.67 \, \%}}$}](https://img.qammunity.org/2021/formulas/chemistry/high-school/h8sjsnhjnn4u8v2wqucer5k850a1x1darm.png)