53.4k views
4 votes
Find the length of RA. A. 42 B. 84 C. 14 D. 7

Find the length of RA. A. 42 B. 84 C. 14 D. 7-example-1
User Noddy Cha
by
4.6k points

2 Answers

3 votes

Answer:


\large \boxed{\mathrm{B. \ 84}}

Explanation:


LU bisects
RU and
UA.


RU=UA


3m+21=6m

Solve for m.

Subtract 3m from both sides.


21=3m

Divide both sides by 3.


7=m

Calculate
RA.


RA=3m+21+6m


RA=9m+21

Put m = 7.


RA=9(7)+21


RA=63+21


RA=84

User Ray Kiddy
by
4.6k points
0 votes

Answer:

B) 84

Explanation:

ΔLRU ≅ ΔLAU {SAS congruent}

Therefore, UA = UR {CPCT}

6m = 3m +21

Subtract 3m from both sides

6m - 3m = 3m + 21 -3m

3m = 21

Divide both sides by 3

3m/3 = 21/3

m = 7

RA = RU + UA

= 3m + 21 + 6m {add like terms}

= 9m + 21 {Plug in m =7}

= 9*7 + 21

= 63 + 21

RA = 84 units

User Vin Xi
by
5.4k points