Answer:
a. the temperature (K) at state 2 is
![\mathbf{T_2 =270.76 \ K}}](https://img.qammunity.org/2021/formulas/engineering/college/2qvqlsvjwdls4juyr41q2mmaifn1rv1d8r.png)
b. the pressure (kPa) at state 2 is
![\mathtt{ \mathbf{ p_2 = 81.79 \ kPa }}](https://img.qammunity.org/2021/formulas/engineering/college/6kuhmpjdvfsv8d3i7qci1s7pnfp1sr3w4g.png)
c. the specific enthalpy (kJ/kg) at state 2 is
![\mathbf{h_2 = 271.84 \ kJ/kg}}](https://img.qammunity.org/2021/formulas/engineering/college/j2ta9rafshgt38q5ais46mu79ytn0hgqee.png)
d. the temperature (K) at state 3 is
![\mathbf{ T_3 = 532.959 \ K}](https://img.qammunity.org/2021/formulas/engineering/college/vneyn0bp8neeuby95hi67imh01v8decg9h.png)
Step-by-step explanation:
From the given information:
T1 (K) = 249
P1 (kPa) = 61
V1 (m/s) = 209
rp = 10.7
rc = 1.8
The objective is to determine the following:
a. Determine the temperature (K) at state 2.
b. Determine the pressure (kPa) at state 2.
c. Determine the specific enthalpy (kJ/kg) at state 2.
d. Determine the temperature (K) at state 3.
To start with the specific enthalpy (kJ/kg) at state 2.
By the relation of steady -flow energy balance equation for diffuser (isentropic)
![h_1 + (V_1^2)/(2)=h_2+(V^2_2)/(2)](https://img.qammunity.org/2021/formulas/engineering/college/e4li9fn42n3eleaje5iwvzsucza4g6fuj3.png)
![h_1 + (V_1^2)/(2)=h_2+0](https://img.qammunity.org/2021/formulas/engineering/college/mx6zh0ira4onlcs3gvpdpwpy163g594l1e.png)
![h_2=h_1 + (V_1^2)/(2)](https://img.qammunity.org/2021/formulas/engineering/college/eb48rspruqhapch5i1vybmmhpayh05xyys.png)
For ideal gas;enthalpy is only a function of temperature, hence
T = h
where;
is the specific enthalpy at inlet =
![c_pT_1](https://img.qammunity.org/2021/formulas/engineering/college/vrq8q7pk6ve090r4yww1p6xpbg6yrsvlkp.png)
is the specific enthalpy at outlet =
![c_pT_2](https://img.qammunity.org/2021/formulas/engineering/college/2jcu5hk9boq07cemovm4eoxtlco7bw3ya7.png)
= 1.004 kJ/kg.K or 1004 J/kg.K
Given that:
(K) = 249
(m/s) = 209
∴
![h_2=C_pT_1+ (V_1^2)/(2)](https://img.qammunity.org/2021/formulas/engineering/college/x8u3nh1m8fw6tg0cn34cpma02o9uv4z9iq.png)
![h_2=1004 * 249+ (209^2)/(2)](https://img.qammunity.org/2021/formulas/engineering/college/ngmgxhd0sw3716gr7nxtpghyodegbj1s9z.png)
![h_2 = 249996+21840.5](https://img.qammunity.org/2021/formulas/engineering/college/c71jjak5wkkm1tlcb937gxuq8kb40rdaw0.png)
![\mathbf{\mathtt{h_2 = 271836.5 \ J/kg}}](https://img.qammunity.org/2021/formulas/engineering/college/5xd4vhdbcb7u8zalocg458hyk1myf8nziv.png)
![\mathbf{h_2 = 271.84 \ kJ/kg}}](https://img.qammunity.org/2021/formulas/engineering/college/j2ta9rafshgt38q5ais46mu79ytn0hgqee.png)
Determine the temperature (K) at state 2.
SInce;
![\mathtt{h_2 = c_pT_2 = 271.84 \ kJ/kg}](https://img.qammunity.org/2021/formulas/engineering/college/iypgvfnjkdj1wnhz9enddx7lozxkl10lw7.png)
![\mathtt{ c_pT_2 = 271.84 \ kJ/kg}](https://img.qammunity.org/2021/formulas/engineering/college/uz2miv9jdo5qsnmi57kp12syu6mmlvzr86.png)
![\mathtt{T_2 = (271.84 \ kJ/kg)/( c_p)}](https://img.qammunity.org/2021/formulas/engineering/college/9k6fxcyev1kg7gbt8faqiuqskmxk75ycgg.png)
![\mathtt{T_2 = (271.84 \ kJ/kg)/(1.004 \ kJ/kg.K)}](https://img.qammunity.org/2021/formulas/engineering/college/a0rmc4gins1ckibq0ghunxl7djuj76c19a.png)
![\mathbf{T_2 =270.76 \ K}}](https://img.qammunity.org/2021/formulas/engineering/college/2qvqlsvjwdls4juyr41q2mmaifn1rv1d8r.png)
Determine the pressure (kPa) at state 2.
For isentropic condition,
![\mathtt{ (T_2)/(T_1)= \begin {pmatrix} (p_2)/(p_1) \end {pmatrix} ^(k-1)/(k)}](https://img.qammunity.org/2021/formulas/engineering/college/o5g8bxx8zosgdakk7vj5d1v90g9bq7pxhg.png)
where ;
k = specific heat ratio = 1.4
![\mathtt{ (270.76)/(249)= \begin {pmatrix} (p_2)/(61) \end {pmatrix} ^(1.4-1)/(1.4)}](https://img.qammunity.org/2021/formulas/engineering/college/hfyk28zcsswc52isu4i9psct43sc2ysppz.png)
![\mathtt{ 1.087389558= \begin {pmatrix} (p_2)/(61) \end {pmatrix} ^(0.4)/(1.4)}](https://img.qammunity.org/2021/formulas/engineering/college/wil8vfjm10q97gysz03zadbbocrpdzfxe6.png)
![\mathtt{ 1.087389558 * 61 ^ {^ (0.4)/(1.4) }}=p_2} ^(0.4)/(1.4)}](https://img.qammunity.org/2021/formulas/engineering/college/f54un8w97ouk2j0y2vbg2fmlomb26dq0ho.png)
![\mathtt{ 3.519487255=p_2} ^(0.4)/(1.4)}](https://img.qammunity.org/2021/formulas/engineering/college/2pea0ds9jejowkr0df74dc3cz8oc02icv9.png)
![\mathtt{ \mathbf{ p_2 = \sqrt[0.4]{3.519487255^(1.4)} }}](https://img.qammunity.org/2021/formulas/engineering/college/p6flayjxzlkq9qcubncsnx5ix1f4bakqdm.png)
![\mathtt{ \mathbf{ p_2 = 81.79 \ kPa }}](https://img.qammunity.org/2021/formulas/engineering/college/6kuhmpjdvfsv8d3i7qci1s7pnfp1sr3w4g.png)
d. Determine the temperature (K) at state 3.
For the isentropic process
![\mathtt{(T_3)/(T_2) = \begin {pmatrix} (p_3)/(p_2) \end {pmatrix}^{(k-1)/(k)}}](https://img.qammunity.org/2021/formulas/engineering/college/9lcz95z5e8gvd85ujqctexs83upzr8n2g2.png)
where;
is the compressor ratio
![\mathtt{r_p}](https://img.qammunity.org/2021/formulas/engineering/college/maa4ycvnyrex55ew0bw3zh256q3t2w6n1s.png)
Given that ; the compressor ratio
= 10.7
![\mathtt{(T_3)/(T_2) = \begin {pmatrix} r_p \end {pmatrix}^{(k-1)/(k)}}](https://img.qammunity.org/2021/formulas/engineering/college/le2m49vgiewwco6dhja6b9i5k6jiax68pg.png)
![\mathtt{(T_3)/(270.76) = \begin {pmatrix} 10.7 \end {pmatrix}^{(1.4-1)/(1.4)}}](https://img.qammunity.org/2021/formulas/engineering/college/64knq9l89galm8a9lpas27dbpcfgvd8xpe.png)
![\mathtt{(T_3)/(270.76) = \begin {pmatrix} 10.7 \end {pmatrix}^{^ (0.4)/(1.4)}}](https://img.qammunity.org/2021/formulas/engineering/college/yug4z7pbuo31cmk0bx076fs81ozdrawdbu.png)
![\mathtt{{T_3}{} =270.76 *\begin {pmatrix} 10.7 \end {pmatrix}^{^ (0.4)/(1.4)}}](https://img.qammunity.org/2021/formulas/engineering/college/m9emy0t6mvzsneh5a177dfq2yqyrux51cq.png)
![\mathbf{ T_3 = 532.959 \ K}](https://img.qammunity.org/2021/formulas/engineering/college/vneyn0bp8neeuby95hi67imh01v8decg9h.png)