48.4k views
2 votes
PROVE THAT:

cos 20° - sin 20° = ​​ \sqrt{2}sin25°



1 Answer

4 votes

Answer:

See below.

Explanation:


\cos(20)-\sin(20)=√(2)\sin(25)

First, use the co-function identity:


\sin(90-x)=\cos(x)

We can turn the second term into cosine:


\sin(20)=\sin(90-70)=\cos(70)

Substitute:


\cos(20)-\cos(70)=√(2)\sin(25)

Now, use the sum to product formulas. We will use the following:


\cos(x)-\cos(y)=-2\sin((x+y)/(2))\sin((x-y)/(2))

Substitute:


\cos(20)-\cos(70)=-2\sin((20+70)/(2))\sin((20-70)/(2))\\\cos(20)-\cos(70) =-2\sin(45)\sin(-25)\\\cos(20)-\cos(70)=-2((√(2))/(2))\sin(-25)\\ \cos(20)-\cos(70)=-√(2)\sin(-25)

Use the even-odd identity:


\sin(-x)=-\sin(x)

Therefore:


\cos(20)-\cos(70)=-√(2)\sin(-25)\\\cos(20)-\cos(70)=-√(2)\cdot-\sin(25)\\\cos(20)-\cos(70)=√(2)\sin(25)

Replace the second term with the original term:


\cos(20)-\sin(20)=√(2)\sin(25)

Proof complete.

User Tapas Thakkar
by
5.8k points