Answer: Tension = 47.8N, Δx = 11.5×
m.
Tension = 95.6N, Δx = 15.4×
m
Step-by-step explanation: A speed of wave on a string under a tension force can be calculated as:
![|v| = \sqrt{(F_(T))/(\mu) }](https://img.qammunity.org/2021/formulas/physics/college/idxhomt93oz8a1xrid0oqi0py47ktfhrah.png)
is tension force (N)
μ is linear density (kg/m)
Determining velocity:
![|v| = \sqrt{(47.8)/(5.47.10^(-3)) }](https://img.qammunity.org/2021/formulas/physics/college/8kr8oifanv0ve04y6ptp6pedb4uaf9z84m.png)
![|v| = √(0.00874 )](https://img.qammunity.org/2021/formulas/physics/college/jqtaiy4yxew3vqpm2b2kus4nn4zk88vd1c.png)
0.0935 m/s
The displacement a pulse traveled in 1.23ms:
![\Delta x = |v|.t](https://img.qammunity.org/2021/formulas/physics/college/dznnkrgnx32tjpog7bavgm20ijs1pet28f.png)
![\Delta x = 9.35.10^(-2)*1.23.10^(-3)](https://img.qammunity.org/2021/formulas/physics/college/oneogym3xoduz2h4vzeseysht134suqqc0.png)
Δx = 11.5×
With tension of 47.8N, a pulse will travel Δx = 11.5×
m.
Doubling Tension:
![|v| = \sqrt{(2*47.8)/(5.47.10^(-3)) }](https://img.qammunity.org/2021/formulas/physics/college/3ssvtf8ihkzs88unxnlbcknfh0v9jgrshv.png)
![|v| = √(2.0.00874 )](https://img.qammunity.org/2021/formulas/physics/college/fwru4378xmrflo9zj6wtdyz6bdzcuzpt0v.png)
![|v| = √(0.01568)](https://img.qammunity.org/2021/formulas/physics/college/ifam0hbqehnc8559tfsiynjr0pv0iz6ncw.png)
|v| = 0.1252 m/s
Displacement for same time:
![\Delta x = |v|.t](https://img.qammunity.org/2021/formulas/physics/college/dznnkrgnx32tjpog7bavgm20ijs1pet28f.png)
![\Delta x = 12.52.10^(-2)*1.23.10^(-3)](https://img.qammunity.org/2021/formulas/physics/college/q4lleyrhch0nuqe12z245itcuus6pa8ltd.png)
15.4×
![10^(-5)](https://img.qammunity.org/2021/formulas/physics/college/bxiomo7bfqzknikkrode9xzyh8i9ui2so2.png)
With doubled tension, it travels
15.4×
m