Answer:
The margin of error is
![E = 1.96 * ( 0.92)/(√(28 ) )](https://img.qammunity.org/2021/formulas/mathematics/college/sf423skr9n8x95a0hav9peh6sipzey3xwp.png)
Explanation:
From the question we are told that
The sample size is
![n = 28](https://img.qammunity.org/2021/formulas/mathematics/college/advrua6axvjqq3j1zxidsnkxbnml385bzx.png)
The sample mean is
![\= x = 2.4 \ hr](https://img.qammunity.org/2021/formulas/mathematics/college/3595q5vec5t0i0sdvt2648pfeqmozsmbj1.png)
The standard deviation is
![\sigma = 0.92 \ hr](https://img.qammunity.org/2021/formulas/mathematics/college/x3vey4cad64kfk4279w087qnfilfef3to3.png)
Given that the confidence level is 95% the the level of significance can be evaluated as
![\alpha = 100 -95](https://img.qammunity.org/2021/formulas/mathematics/college/qf54f2itn0sh0cf10d4qgfhnymyh68dn15.png)
![\alpha = 5 \%](https://img.qammunity.org/2021/formulas/mathematics/college/3f3iu6wxduns7cx6uypnyvoa3ef9w74iyp.png)
![\alpha = 0.05](https://img.qammunity.org/2021/formulas/mathematics/college/445n2djo6b5zbv5df68kz5tjhh2puf9bol.png)
Next we obtain the critical value of
from the normal distribution table,the value is
![Z_{(\alpha )/(2) } = Z_{(0.05)/(2) } = 1.96](https://img.qammunity.org/2021/formulas/mathematics/college/xpt6mo7vwyw31btynfpxat4q6bz1y03w5l.png)
Generally the margin of error is mathematically represented as
![E = Z_{(\alpha )/(2) } * (\sigma )/(√(n) )](https://img.qammunity.org/2021/formulas/mathematics/college/yyo2aja7inr1g5qfaknbas6t3evz7q0k29.png)
substituting values
![E = 1.96 * ( 0.92)/(√(28 ) )](https://img.qammunity.org/2021/formulas/mathematics/college/sf423skr9n8x95a0hav9peh6sipzey3xwp.png)
![E = 0.3408](https://img.qammunity.org/2021/formulas/mathematics/college/zgwvmf3e44wsz0p85la0kjf8lm13roqzsv.png)