Answer:
A. No real solution
B. 5 and -1.5
C. 5.5
Explanation:
The quadratic formula is:
, with a being the x² term, b being the x term, and c being the constant.
Let's solve for a.
![\begin{array}{*{20}c} {\frac{{ 5 \pm \sqrt {5^2 - 4\cdot1\cdot11} }}{{2\cdot1}}} \end{array}](https://img.qammunity.org/2021/formulas/mathematics/high-school/sjhhmclndng8ldn4cln2rmyy32sfqa40jv.png)
![\begin{array}{*{20}c} {\frac{{ 5 \pm \sqrt {25 - 44} }}{{2}}} \end{array}](https://img.qammunity.org/2021/formulas/mathematics/high-school/t0r2wcbaluxbzwuben7ev65re7v52yjzry.png)
![\begin{array}{*{20}c} {\frac{{ 5 \pm \sqrt {-19} }}{{2}}} \end{array}](https://img.qammunity.org/2021/formulas/mathematics/high-school/nyt47zqompzldah4pwb4i6mbgls00kn18s.png)
We can't take the square root of a negative number, so A has no real solution.
Let's do B now.
![\begin{array}{*{20}c} {\frac{{ 7 \pm \sqrt {7^2 - 4\cdot-2\cdot15} }}{{2\cdot-2}}} \end{array}](https://img.qammunity.org/2021/formulas/mathematics/high-school/rb4mfmefvl2jwrazo4q9bl1g0a1jobu5ns.png)
![\begin{array}{*{20}c} {\frac{{ 7 \pm \sqrt {49 + 120} }}{{-4}}} \end{array}](https://img.qammunity.org/2021/formulas/mathematics/high-school/itco1st6s9dlehssnmlp2ydwvulamgrf6q.png)
![\begin{array}{*{20}c} {\frac{{ 7 \pm \sqrt {169} }}{{-4}}} \end{array}](https://img.qammunity.org/2021/formulas/mathematics/high-school/fubdx8foa142yzglpg9oxnulxx38ui60u5.png)
![\begin{array}{*{20}c} {\frac{{ 7 \pm 13 }}{{-4}}} \end{array}](https://img.qammunity.org/2021/formulas/mathematics/high-school/89akkcry2ayun36kalrzo4xmfk6jxvvkst.png)
![(7+13)/(4) = 5\\(7-13)/(4)=-1.5](https://img.qammunity.org/2021/formulas/mathematics/high-school/xonsnxemxr4mku24l1zqgefrea8p473yuv.png)
So B has two solutions of 5 and -1.5.
Now to C!
![\begin{array}{*{20}c} {\frac{{ -(-44) \pm \sqrt {-44^2 - 4\cdot4\cdot121} }}{{2\cdot4}}} \end{array}](https://img.qammunity.org/2021/formulas/mathematics/high-school/xsfx2glexgv4bx7o828qftns4j720ux7j6.png)
![\begin{array}{*{20}c} {\frac{{ 44 \pm \sqrt {1936 - 1936} }}{{8}}} \end{array}](https://img.qammunity.org/2021/formulas/mathematics/high-school/cea11nme765a6llrfmbpkd1r69k44eexbd.png)
![\begin{array}{*{20}c} {\frac{{ 44 \pm 0}}{{8}}} \end{array}](https://img.qammunity.org/2021/formulas/mathematics/high-school/3fsp2yqsgp6a9o9ml85lng3tco7590ze1q.png)
![(44)/(8) = 5.5](https://img.qammunity.org/2021/formulas/mathematics/high-school/w3c92wf4ow3saqc3ua4acyzzyongpj6vve.png)
So c has one solution: 5.5
Hope this helped (and I'm sorry I'm late!)