62.1k views
0 votes
. Use the quadratic formula to solve each quadratic real equation. Round

your answers to two decimal places. If there is no real solution, say so.
a) x^2 - 5x + 11 = 0
b) -2x^2 - 7x + 15 = 0
c) 4x^2 - 44x + 121 = 0​

User Lucina
by
8.3k points

1 Answer

2 votes

Answer:

A. No real solution

B. 5 and -1.5

C. 5.5

Explanation:

The quadratic formula is:


\begin{array}{*{20}c} {\frac{{ - b \pm \sqrt {b^2 - 4ac} }}{{2a}}} \end{array}, with a being the x² term, b being the x term, and c being the constant.

Let's solve for a.


\begin{array}{*{20}c} {\frac{{ 5 \pm \sqrt {5^2 - 4\cdot1\cdot11} }}{{2\cdot1}}} \end{array}


\begin{array}{*{20}c} {\frac{{ 5 \pm \sqrt {25 - 44} }}{{2}}} \end{array}


\begin{array}{*{20}c} {\frac{{ 5 \pm \sqrt {-19} }}{{2}}} \end{array}

We can't take the square root of a negative number, so A has no real solution.

Let's do B now.


\begin{array}{*{20}c} {\frac{{ 7 \pm \sqrt {7^2 - 4\cdot-2\cdot15} }}{{2\cdot-2}}} \end{array}


\begin{array}{*{20}c} {\frac{{ 7 \pm \sqrt {49 + 120} }}{{-4}}} \end{array}


\begin{array}{*{20}c} {\frac{{ 7 \pm \sqrt {169} }}{{-4}}} \end{array}


\begin{array}{*{20}c} {\frac{{ 7 \pm 13 }}{{-4}}} \end{array}


(7+13)/(4) = 5\\(7-13)/(4)=-1.5

So B has two solutions of 5 and -1.5.

Now to C!


\begin{array}{*{20}c} {\frac{{ -(-44) \pm \sqrt {-44^2 - 4\cdot4\cdot121} }}{{2\cdot4}}} \end{array}


\begin{array}{*{20}c} {\frac{{ 44 \pm \sqrt {1936 - 1936} }}{{8}}} \end{array}


\begin{array}{*{20}c} {\frac{{ 44 \pm 0}}{{8}}} \end{array}


(44)/(8) = 5.5

So c has one solution: 5.5

Hope this helped (and I'm sorry I'm late!)

User Ambroise
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.