259,076 views
32 votes
32 votes
 Shauna solve the polynomial equations given in the table determine whether each polynomial is correct select correct or incorrect for each equation

 Shauna solve the polynomial equations given in the table determine whether each-example-1
User Pixyzehn
by
2.6k points

2 Answers

18 votes
18 votes

Answer:

correct / incorrect / incorrect

Explanation:

5a - 8 + 2a² + 2a - 1 ← collect like terms

= 2a² + 7a - 9 ← correct

-------------------------------------

b² + 6b - 4 - (3b + b²) ← distribute parenthesis by - 1

= b² + 6b - 4 - 3b - b² ← collect like terms

= 3b - 4 ≠ 2b² + 3b - 4

---------------------------------------

9c - 4c² - (2c² + c) ← distribute parenthesis by - 1

= 9c - 4c² - 2c² - c ← collect like terms

= - 6c² + 8c ≠ - 6c² + 10c

User Zorox
by
2.4k points
10 votes
10 votes

Answer:

correct

incorrect

incorrect

Explanation:


\begin{aligned}(5a-8)+(2a^2+2a-1)&=5a-8+2a^2+2a-1\\& = 2a^2+5a+2a-8-1\\ & = 2a^2+7a-9\end{aligned}


\implies (5a-8)+(2a^2+2a-1)=2a^2+7a-9\quad\textsf{is correct}

---------------------------------------------------------------------------------------


\begin{aligned}(b^2+6b-4)-(3b+b^2) &=b^2+6b-4-3b-b^2\\ & = b^2-b^2+6b-3b-4\\& = 3b-4\end{aligned}


\implies (b^2+6b-4)-(3b+b^2)=2b^2+3b-4\quad\textsf{is incorrect}

---------------------------------------------------------------------------------------


\begin{aligned}(9c-4c^2)-(2c^2+c) &=9c-4c^2-2c^2-c\\ & = -4c^2-2c^2+9c-c\\& = -6c^2+8c\end{aligned}


\implies (9c-4c^2)-(2c^2+c)=-6c^2+10c\quad\textsf{is incorrect}

User Oliver Goossens
by
2.5k points