Answer:
the probability that out of these 75 people, 14 or more drink coffee is 0.6133
Explanation:
Given that:
sample size n = 75
proportion of high school students that drink coffee p = 20% = 0.20
The proportion of the students that did not drink coffee = 1 - p
Let X be the random variable that follows a normal distribution
X
N (n, p)
X
N (75, 0.20)
= 75 × 0.20
15
![\sigma = √(p (1-p) n)](https://img.qammunity.org/2021/formulas/mathematics/college/swhyfoba4qpvp3hf2k9u2we0y6p1kwo5l9.png)
![\sigma = √(0.20(1-0.20) 75)](https://img.qammunity.org/2021/formulas/mathematics/college/xbmgl6krttu6qvo8tq4gl3vvpw38th8bjz.png)
![\sigma = √(0.20*0.80* 75)](https://img.qammunity.org/2021/formulas/mathematics/college/z0lvity3vgfqywzxp85l9uqteg7utjxtlm.png)
![\sigma = √(12)](https://img.qammunity.org/2021/formulas/mathematics/college/jzu1br0lhuw0pq7rxtl613z754u0w1dqjb.png)
![\sigma = 3.464](https://img.qammunity.org/2021/formulas/mathematics/college/7ulvwd4otx2rnhqq8c0tn59twua70mgpyg.png)
Now ; if 14 or more people drank coffee ; then
![P(X \geq 14) = P((X-\mu )/(\sigma) \leq (X-\mu)/(\sigma))](https://img.qammunity.org/2021/formulas/mathematics/college/4b61uc5l53bi4nzjw7sah6rr2b63294fqv.png)
![P(X \geq 14) =P((14-\mu )/(\sigma) \leq (14-15)/(3.464))](https://img.qammunity.org/2021/formulas/mathematics/college/rtkmhv76argulcr57z6zhe6tukv1fuw84j.png)
![P(X \geq 14) = P(Z \leq (-1)/(3.464))](https://img.qammunity.org/2021/formulas/mathematics/college/ivrhitlvzueufj1qwq97og6gbfdepxs377.png)
![P(X \geq 14) = P(Z \leq -0.28868)](https://img.qammunity.org/2021/formulas/mathematics/college/15ga9csafqx7zcmihmtfttkw48pg1lg7jh.png)
From the standard normal z tables; (-0.288)
![P(X \geq 14) = P(Z \leq 0.38667)](https://img.qammunity.org/2021/formulas/mathematics/college/h79bpyg6wp0xm4s5raifq1fx65dlh8rb5i.png)
![P(X \geq 14) = 1 - 0.38667](https://img.qammunity.org/2021/formulas/mathematics/college/gsgqxsnmftiv19vzvymizrs8zsu9edyosg.png)
![P(X \geq 14) = 0.61333](https://img.qammunity.org/2021/formulas/mathematics/college/kq1rxfim7u7fjujpyazeyuc8cvadph3vf4.png)
the probability that out of these 75 people, 14 or more drink coffee is 0.6133