29.0k views
4 votes
PLEASE HELP !! (2/5) -50 POINTS-

PLEASE HELP !! (2/5) -50 POINTS--example-1
User GigaRohan
by
7.4k points

1 Answer

5 votes

Answer:


X=\begin{bmatrix}5\\ 14\\ -10\end{bmatrix}

Explanation:

Our approach here is to isolate X, and simplify this solution. We want to begin by subtracting matrix 2, as shown below, from either side - the first step in isolating X. Afterwards we can multiply either side by the inverse of matrix 1, the co - efficient of X, such that X is now isolated. We can then simplify this value.

Given,


\begin{bmatrix}1&2&3\\ -3&5&5\\ \:\:\:3&-2&-1\end{bmatrix} : Matrix 1


\begin{bmatrix}3\\ -1\\ 8\end{bmatrix} : Matrix 2


\begin{bmatrix}1&2&3\\ -3&5&5\\ 3&-2&-1\end{bmatrix}X+\begin{bmatrix}3\\ -1\\ 8\end{bmatrix}=\begin{bmatrix}6\\ 4\\ 5\end{bmatrix} ( Subtract Matrix 2 from either side )


\begin{bmatrix}1&2&3\\ -3&5&5\\ 3&-2&-1\end{bmatrix}X=\begin{bmatrix}6\\ 4\\ 5\end{bmatrix}-\begin{bmatrix}3\\ -1\\ 8\end{bmatrix} ( Simplify )


\begin{bmatrix}6\\ 4\\ 5\end{bmatrix}-\begin{bmatrix}3\\ -1\\ 8\end{bmatrix} = \begin{bmatrix}6-3\\ 4-\left(-1\right)\\ 5-8\end{bmatrix}=\begin{bmatrix}3\\ 5\\ -3\end{bmatrix} ( Substitute )


\begin{bmatrix}1&2&3\\ -3&5&5\\ 3&-2&-1\end{bmatrix}X=\begin{bmatrix}3\\ 5\\ -3\end{bmatrix} ( Multiply either side by inverse of Matrix 1 )


X=\begin{bmatrix}1&2&3\\ -3&5&5\\ 3&-2&-1\end{bmatrix}^(-1)\begin{bmatrix}3\\ 5\\ -3\end{bmatrix}=\begin{bmatrix}5\\ 14\\ -10\end{bmatrix} - let's say that this is Matrix 3. Our solution would hence be Matrix 3.

User ZakiMak
by
7.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories