29.0k views
4 votes
PLEASE HELP !! (2/5) -50 POINTS-

PLEASE HELP !! (2/5) -50 POINTS--example-1
User GigaRohan
by
4.2k points

1 Answer

5 votes

Answer:


X=\begin{bmatrix}5\\ 14\\ -10\end{bmatrix}

Explanation:

Our approach here is to isolate X, and simplify this solution. We want to begin by subtracting matrix 2, as shown below, from either side - the first step in isolating X. Afterwards we can multiply either side by the inverse of matrix 1, the co - efficient of X, such that X is now isolated. We can then simplify this value.

Given,


\begin{bmatrix}1&2&3\\ -3&5&5\\ \:\:\:3&-2&-1\end{bmatrix} : Matrix 1


\begin{bmatrix}3\\ -1\\ 8\end{bmatrix} : Matrix 2


\begin{bmatrix}1&2&3\\ -3&5&5\\ 3&-2&-1\end{bmatrix}X+\begin{bmatrix}3\\ -1\\ 8\end{bmatrix}=\begin{bmatrix}6\\ 4\\ 5\end{bmatrix} ( Subtract Matrix 2 from either side )


\begin{bmatrix}1&2&3\\ -3&5&5\\ 3&-2&-1\end{bmatrix}X=\begin{bmatrix}6\\ 4\\ 5\end{bmatrix}-\begin{bmatrix}3\\ -1\\ 8\end{bmatrix} ( Simplify )


\begin{bmatrix}6\\ 4\\ 5\end{bmatrix}-\begin{bmatrix}3\\ -1\\ 8\end{bmatrix} = \begin{bmatrix}6-3\\ 4-\left(-1\right)\\ 5-8\end{bmatrix}=\begin{bmatrix}3\\ 5\\ -3\end{bmatrix} ( Substitute )


\begin{bmatrix}1&2&3\\ -3&5&5\\ 3&-2&-1\end{bmatrix}X=\begin{bmatrix}3\\ 5\\ -3\end{bmatrix} ( Multiply either side by inverse of Matrix 1 )


X=\begin{bmatrix}1&2&3\\ -3&5&5\\ 3&-2&-1\end{bmatrix}^(-1)\begin{bmatrix}3\\ 5\\ -3\end{bmatrix}=\begin{bmatrix}5\\ 14\\ -10\end{bmatrix} - let's say that this is Matrix 3. Our solution would hence be Matrix 3.

User ZakiMak
by
3.7k points