Answer:
![2ab - 6a + 5b - 15](https://img.qammunity.org/2021/formulas/mathematics/high-school/4ov3tzuno11agfe6y3yroiuu1qnxwlchht.png)
Explanation:
Given
![2ab - 6a + 5b + \_](https://img.qammunity.org/2021/formulas/mathematics/high-school/vj8iqpcqvcx7q0okk77nrukhgah9021cz5.png)
Required
Fill in the gap to produce the product of linear expressions
![2ab - 6a + 5b + \_](https://img.qammunity.org/2021/formulas/mathematics/high-school/vj8iqpcqvcx7q0okk77nrukhgah9021cz5.png)
Split to 2
![(2ab - 6a) + (5b + \_)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ardqyz6u0qbm7bl9l4qia08xkxbyszi81m.png)
Factorize the first bracket
![2a(b - 3) + (5b + \_)](https://img.qammunity.org/2021/formulas/mathematics/high-school/tfwwbja3v6luagy9a18yaepo20kas762t3.png)
Represent the _ with X
![2a(b - 3) + (5b + X)](https://img.qammunity.org/2021/formulas/mathematics/high-school/mfgi23xnwqq2zm6k3fhoxjnihpp1z4176a.png)
Factorize the second bracket
![2a(b - 3) + 5(b + (X)/(5))](https://img.qammunity.org/2021/formulas/mathematics/high-school/ccvl9o853u6dy3xra6m3kchhy2mbfk3bqp.png)
To result in a linear expression, then the following condition must be satisfied;
![b - 3 = b + (X)/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ngbmox29tyltg79ajuwbjlq74ocgkleeif.png)
Subtract b from both sides
![b - b- 3 = b - b+ (X)/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/emnov85c8dx3unrdirtoszblaakf6910iq.png)
![- 3 = (X)/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/lm909x7mc5put45xm6ch3y1ykas66mht6s.png)
Multiply both sides by 5
![- 3 * 5 = (X)/(5) * 5](https://img.qammunity.org/2021/formulas/mathematics/high-school/fj5k8va5clnf5qf46d44lkrv4507ui4u9r.png)
![X = -15](https://img.qammunity.org/2021/formulas/mathematics/high-school/nk8nz6dpirp4r9iwxtcny3z93hxda5v8oq.png)
Substitute -15 for X in
![2a(b - 3) + 5(b + (X)/(5))](https://img.qammunity.org/2021/formulas/mathematics/high-school/ccvl9o853u6dy3xra6m3kchhy2mbfk3bqp.png)
![2a(b - 3) + 5(b + (-15)/(5))](https://img.qammunity.org/2021/formulas/mathematics/high-school/qfxgii9x4viouf2povtjsjemtjhplsjuhs.png)
![2a(b - 3) + 5(b - (15)/(5))](https://img.qammunity.org/2021/formulas/mathematics/high-school/p38gf8zf0bj5xb2aj05807myl0ih73bdcx.png)
![2a(b - 3) + 5(b - 3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/2dlo6dtba5ylzxa83jt7q6uxwwilp8i9ad.png)
![(2a + 5)(b - 3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/tavz1t6erokp2uav8ap34v1421okv9kjwv.png)
The two linear expressions are
and
![(b - 3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/asrfler99dcsyfg6m8n767xyxopihcddne.png)
Their product will result in
![2ab - 6a + 5b - 15](https://img.qammunity.org/2021/formulas/mathematics/high-school/4ov3tzuno11agfe6y3yroiuu1qnxwlchht.png)
Hence, the constant is -15