Answer:
Option (D)
Explanation:
The given graph represents a rational function having,
1). Vertical asymptote → x = 2
2). Horizontal asymptote → y = 0
Parent function representing the rational function will be in the form of,
F(x) =
![(1)/(x^(2) )](https://img.qammunity.org/2021/formulas/mathematics/college/aiw82zh3at4f968e8qfphcf5tyj89yv28z.png)
Since, vertical asymptote of the function is x = 2, denominator of the function will be in the form of (x - 2)².
Since, horizontal asymptote of the function is y = 0, highest exponent term in the numerator will be 0.
Therefore, numerator of the fraction will be x⁰.
The rational function given in the graph will be,
F(x) =
![(x^(0))/((x-2)^2)](https://img.qammunity.org/2021/formulas/mathematics/college/49ghg9lo2jziyqsdsgluc773ouk2oyd8az.png)
F(x) =
![(1)/((x-2)^2)](https://img.qammunity.org/2021/formulas/mathematics/college/m2jqchzxviw3z8e8pyyikqznxrx1glqtwx.png)
Option (D) will be the answer.