Answer:
Option (2)
Explanation:
In this question we have to find the values of Sinθ and tanθ where
.
Cosθ =
⇒ θ =
[Since
![\text{Cos}(7\pi )/(4)=\text{Cos}(2\pi-(\pi)/(4))](https://img.qammunity.org/2021/formulas/mathematics/college/u9168tb07bc8ctgzbfky90h3jiuw3aq50o.png)
![=\text{Cos}(\pi )/(4)](https://img.qammunity.org/2021/formulas/mathematics/college/1xdh9c9ftz4wdrhr1n66qifwrlkyyz606o.png)
]
Since Cosine of any angle between
and 2π is positive and Sine is negative in nature,
=
![-(√(2))/(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/gcxxwaan252kb2093fgi3mipeewey45fa3.png)
Since, tanθ =
![\frac{\text{Sin}\theta}{\text{Cos}\theta}](https://img.qammunity.org/2021/formulas/mathematics/college/h5bdtioujh9l3ktgbvuj2wqalghe88sox4.png)
tanθ =
![((-√(2) )/(2) )/((√(2) )/(2) )](https://img.qammunity.org/2021/formulas/mathematics/college/6vjsr3xy216o6unoemx2my4jjldvgjo9x0.png)
=
![-(√(2))/(2)* (2)/(√(2))](https://img.qammunity.org/2021/formulas/mathematics/college/c8x6ysw5x05x5s7tgacjt1mocj1xvdv2cg.png)
= -1
Therefore, Option (2) will be the answer.