186k views
15 votes
Trapezoid area calculations

Trapezoid area calculations-example-1
User Katspaugh
by
7.8k points

2 Answers

7 votes

#1

  • 1/2(Sum of parallel sides)Height=Area

Area

  • 1/2(6+14)(5.5)
  • 1/2(20)(5.5)
  • 10(5.5)
  • 55in²

#2

Apply Pythagorean theorem

  • B²=14²-12²=196-144=52
  • B\approx 7

Area

  • 1/2(52+8)(12)
  • 6(60)
  • 360yd²

#3

Area

  • 1/2(Diagonals)
  • 1/2(6+6)(9+3)
  • 1/2(12)12)
  • 6(12)
  • 72ft²
User KJ Sudarshan
by
8.7k points
5 votes

Answer:

Formulas Used


\textsf{Area of a Trapezoid}=(1)/(2)(a+b)h

where:

  • a and b are the bases (parallel sides)
  • h is the height (perpendicular to the parallel sides)


\textsf{Pythagoras' Theorem}: \quad a^2+b^2=c^2

where:

  • a and b are the legs of the right triangle
  • c is the hypotenuse (longest side, opposite the right angle)


\textsf{Area of a Kite}=(1)/(2)pq

where:

  • p and q are the diagonals

-----------------------------------------------------------------------------------------

Question g (Trapezoid)


\textsf{Formula}: \quad A=(1)/(2)(a+b)h


\textsf{Substitution}: \quad A=(1)/(2)(6+14)5.5


\textsf{Answer}: \quad A=55\:\: \sf in^2

Question h (Trapezoid)


\textsf{Formula}: \quad A=(1)/(2)(a+b)h

Find the missing side length of the right triangle using Pythagoras' Theorem:


\implies a=√(14^2-12^2)=√(52)

Therefore, top edge of trapezoid = √52 + 8


\textsf{Substitution}: \quad A=(1)/(2)(√(52)+8+8)12


\textsf{Answer}: \quad A=96+12√(13)=139.3\:\: \sf yd^2\:(nearest\:tenth)

Question i (Kite)


\textsf{Formula}: \quad A=(1)/(2)pq


\textsf{Substitution}: \quad A=(1)/(2)(6+6)(3+9)


\textsf{Answer}: \quad A=72\:\: \sf ft^2

User Prikrutil
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories