Answer:
![\Large \boxed{\sf \ \ 28 \ \text{ and } \ 62 \ \ }](https://img.qammunity.org/2021/formulas/mathematics/college/kyhp9m6ufqmv2xovv9ha5mbf65u6gvf62a.png)
Explanation:
Hello, let's note a and b the two numbers.
We can write that
a = 6 + 2b
ab = 1736
So
![(6+2b)b=1736\\\\ \text{***Subtract 1736*** } <=> 2b^2+6b-1736=0\\\\ \text{***Divide by 2 } <=> b^2+3b-868=0 \\ \\ \text{***factorize*** } <=> b^2 +31b-28b-868=0 \\ \\ <=> b(b+31) -28(b+31)=0 \\ \\ <=> (b+31)(b-28) =0 \\ \\ <=> b = 28 \ \ or \ \ b = -31](https://img.qammunity.org/2021/formulas/mathematics/college/oxmzotbjmcmrfw5cmb73cz6nzybegckpul.png)
We are looking for positive numbers so the solution is b = 28
and then a = 6 +2*28 = 62
Hope this helps.
Do not hesitate if you need further explanation.
Thank you