Answer:

Explanation:
Finding m∠RUS:
Given that RU = 50°, So Central Angle ROU = 50° too because the measure of arc is equal to its central angle
Now, Let's assume a triangle ROU. It is an isosceles triangle since RO = RU (Radii of the same circle)
So,
∠ORU ≅ ∠OUR (Angles opposite to equal sides are equal)
So, we can write them as 2(∠RUO)
So,
2(∠RUO)+50 = 180 (Interior angles of a triangle add up to 180)
2(∠RUO) = 180-50
2(∠RUO) = 130
Dividing both sides by 2
∠RUO = 130/2
∠RUO = 65 degrees
m∠RUS = 65 degrees (Both are the same)
Finding m∠STU now:
In a semi circle (Given that SU is a diameter) , there must be a 90 degrees angle sin it opposite to the diameter.
So,
m∠STU = 90 degrees