40.2k views
1 vote
Find the solution of the given initial value problem. ty' + 2y = sin t, y π 2 = 9, t > 0 y(t) =

1 Answer

2 votes

For the ODE


ty'+2y=\sin t

multiply both sides by t so that the left side can be condensed into the derivative of a product:


t^2y'+2ty=t\sin t


\implies(t^2y)'=t\sin t

Integrate both sides with respect to t :


t^2y=\displaystyle\int t\sin t\,\mathrm dt=\sin t-t\cos t+C

Divide both sides by
t^2 to solve for y :


y(t)=(\sin t)/(t^2)-\frac{\cos t}t+\frac C{t^2}

Now use the initial condition to solve for C :


y\left(\frac\pi2\right)=9\implies9=\frac{\sin\frac\pi2}{\frac{\pi^2}4}-(\cos\frac\pi2)/(\frac\pi2)+\frac C{\frac{\pi^2}4}


\implies9=\frac4{\pi^2}(1+C)


\implies C=\frac{9\pi^2}4-1

So the particular solution to the IVP is


y(t)=(\sin t)/(t^2)-\frac{\cos t}t+\frac{\frac{9\pi^2}4-1}{t^2}

or


y(t)=(4\sin t-4t\cos t+9\pi^2-4)/(4t^2)

User Motorcb
by
5.3k points