122k views
2 votes
A portion of the Quadratic Formula proof is shown. Fill in the missing statement. x equals b plus or minus the square root of b squared minus 4 times a times c, all over 2 times a x equals negative b plus or minus the square root of b squared minus 4 times a times c, all over a x equals negative b plus or minus the square root of b squared minus 4 times a times c, all over 2 times a x plus b over 2 times a equals negative b plus or minus the square root of b squared minus 4 times a times c, all over 2 times a

A portion of the Quadratic Formula proof is shown. Fill in the missing statement. x-example-1
User Crazybilly
by
5.7k points

2 Answers

2 votes

Answer:


\displaystyle x=(-b \± √(b^2-4ac) )/(2a)

Explanation:


\displaystyle x+(b)/(2a) =\±(√(b^2-4ac) )/(2a)

Subtract
(b)/(2a) from both sides.


\displaystyle x+(b)/(2a) -(b)/(2a) =\±(√(b^2-4ac) )/(2a)-(b)/(2a)


\displaystyle x=( \± √(b^2-4ac) -b)/(2a)


\displaystyle x=(-b \± √(b^2-4ac) )/(2a)

This is a quadratic formula.

User Paul Bakker
by
4.7k points
2 votes

Answer:
x=(-b\pm √(b^2-4ac))/(2a)

Explanation:

When you subtract b/2a from both sides, you end up with the Quadratic Formula.

User Raghu Venmarathoor
by
4.8k points