56.2k views
1 vote
Q.04: (11 points) Given the polar curve r = e θ , where 0 ≤ θ ≤ 2π. Find points on the curve in the form (r, θ) where there is a horizontal or vertical tangent line. g

1 Answer

5 votes

I suppose the curve is
r(\theta)=e^\theta.

Tangent lines to the curve have slope
(dy)/(dx); use the chain rule to get this in polar coordinates.


(dy)/(dx)=(dy)/(d\theta)(d\theta)/(dx)=((dy)/(d\theta))/((dx)/(d\theta))

We have


y(\theta)=r(\theta)\sin\theta\implies(dy)/(d\theta)=(dr)/(d\theta)\sin\theta+r(\theta)\cos\theta


x(\theta)=r(\theta)\cos\theta\implies(dx)/(d\theta)=(dr)/(d\theta)\cos\theta-r(\theta)\sin\theta


r(\theta)=e^\theta\implies(dr)/(d\theta)=e^\theta


\implies(dy)/(dx)=(e^\theta\sin\theta+e^\theta\cos\theta)/(e^\theta\cos\theta-e^\theta\sin\theta)=(\sin\theta+\cos\theta)/(\cos\theta-\sin\theta)

The tangent line is horizontal when the slope is 0, which happens wherever the numerator vanishes:


\sin\theta+\cos\theta=0\implies\sin\theta=-\cos\theta\implies\tan\theta=-1


\implies\theta=\boxed{-\frac\pi4+n\pi}

(where
n is any integer)

The tangent line is vertical when the slope is infinite or undefined, which happens when the denominator is 0:


\cos\theta-\sin\theta=0\implies\sin\theta=\cos\theta\implies\tan\theta=1


\implies\theta=\boxed{\frac\pi4+n\pi}

User Sean Redmond
by
7.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories