151k views
2 votes
Match each pair of points A and B to point C such that ∠ABC = 90°. A(3, 3) and B(12, 6) C(6, 52) A(-10, 5) and B(12, 16) C(16, -6) A(-8, 3) and B(12, 8) C(18, 4) A(12, -14) and B(-16, 21) C(-11, 25) A(-12, -19) and B(20, 45) A(30, 20) and B(-20, -15) arrowBoth arrowBoth arrowBoth arrowBoth

User Arkhon
by
7.8k points

1 Answer

1 vote

Answer:

i) A = (3, 3), B = (12, 6), C = (6, 52) : Not orthogonal, ii) A = (-10, 5), B = (12, 16), C = (6, 52) : Not orthogonal, iii) A = (-8, 3), B = (12, 8), C = (18, 4) : Not orthogonal, iv) A = (12, -14), B = (-16, 21), C = (-11, 25) : Orthogonal, v) A = (-12, -19), B = (20, 45) : Impossible orthogonality, vi) A = (30, 20), B = (-20, -15) : Impossible orthogonality.

Explanation:

The statement indicates that segments AB and BC must be orthogonal. Vectorially speaking, this can be expressed by using the following expression from Linear Algebra:


\overrightarrow {AB} \bullet \overrightarrow {BC} = 0


(AB_(x), AB_(y))\bullet (BC_(x),BC_(y)) = 0


AB_(x)\cdot BC_(x) + AB_(y)\cdot BC_(y) = 0

Now, let is evaluate each choice:

i) A = (3, 3), B = (12, 6), C = (6, 52)


\overrightarrow {AB} = \vec B - \vec A


\overrightarrow {AB} = (12, 6) - (3, 3)


\overrightarrow {AB} = (12-3, 6-3)


\overrightarrow {AB} = (9, 3)


\overrightarrow {BC} = \vec C - \vec B


\overrightarrow {BC} = (6, 52) - (12, 6)


\overrightarrow {BC} = (6 - 12, 52 - 6)


\overrightarrow {BC} = (-6, 46)


\overrightarrow {AB} \bullet \overrightarrow {BC} = (9, 3)\bullet (-6, 46)


\overrightarrow{AB} \bullet \overrightarrow {BC} = (9)\cdot (-6) + (3) \cdot (46)


\overrightarrow{AB}\bullet \overrightarrow {BC} = 84

AB and BC are not orthogonal.

ii) A = (-10, 5), B = (12, 16), C = (6, 52)


\overrightarrow {AB} = \vec B - \vec A


\overrightarrow {AB} = (12, 16) - (-10, 5)


\overrightarrow {AB} = (12+10, 16-5)


\overrightarrow {AB} = (22, 11)


\overrightarrow {BC} = \vec C - \vec B


\overrightarrow {BC} = (6, 52) - (12, 16)


\overrightarrow {BC} = (6 - 12, 52 - 16)


\overrightarrow {BC} = (-6, 36)


\overrightarrow {AB} \bullet \overrightarrow {BC} = (22, 11)\bullet (-6, 36)


\overrightarrow{AB} \bullet \overrightarrow {BC} = (22)\cdot (-6) + (11) \cdot (36)


\overrightarrow{AB}\bullet \overrightarrow {BC} = 264

AB and BC are not orthogonal.

iii) A = (-8, 3), B = (12, 8), C = (18, 4)


\overrightarrow {AB} = \vec B - \vec A


\overrightarrow {AB} = (12, 8) - (-8, 3)


\overrightarrow {AB} = (12+8, 8-3)


\overrightarrow {AB} = (20, 5)


\overrightarrow {BC} = \vec C - \vec B


\overrightarrow {BC} = (18, 4) - (12, 8)


\overrightarrow {BC} = (18 - 12, 4 - 8)


\overrightarrow {BC} = (6, -4)


\overrightarrow {AB} \bullet \overrightarrow {BC} = (20, 5)\bullet (-6, -4)


\overrightarrow{AB} \bullet \overrightarrow {BC} = (20)\cdot (-6) + (5) \cdot (-4)


\overrightarrow{AB}\bullet \overrightarrow {BC} = -140

AB and BC are not orthogonal.

iv) A = (12, -14), B = (-16, 21), C = (-11, 25)


\overrightarrow {AB} = \vec B - \vec A


\overrightarrow {AB} = (-16,21) - (12, -14)


\overrightarrow {AB} = (-16-12, 21+14)


\overrightarrow {AB} = (-28, 35)


\overrightarrow {BC} = \vec C - \vec B


\overrightarrow {BC} = (-11,25) - (-16, 21)


\overrightarrow {BC} = (-11+16, 25-21)


\overrightarrow {BC} = (5, 4)


\overrightarrow {AB} \bullet \overrightarrow {BC} = (-28,35)\bullet (5, 4)


\overrightarrow{AB} \bullet \overrightarrow {BC} = (-28)\cdot (5) + (35) \cdot (4)


\overrightarrow{AB}\bullet \overrightarrow {BC} = 0

AB and BC are orthogonal.

v) A = (-12, -19), B = (20, 45)

It is not possible to determine the orthogonality of this solution, since point C is unknown.

vi) A = (30, 20), B = (-20, -15)

It is not possible to determine the orthogonality of this solution, since point C is unknown.

User Rhys Stephens
by
7.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories