Answer:
a)
![\boxed{Area of Sector AOB = 23.3 units^2}](https://img.qammunity.org/2021/formulas/mathematics/high-school/8pqopnekc3m5ob0jmioychgfcj1be3xgpm.png)
b)
![\boxed{Arc Length = 5.84 units}](https://img.qammunity.org/2021/formulas/mathematics/high-school/uqhnhno0qw1hrb74lbq4c4hxh83een5zhe.png)
Explanation:
a) Area of Sector AOB =
![(1)/(2) r^2 \theta](https://img.qammunity.org/2021/formulas/mathematics/high-school/aiepu3zaovet7z6r39cr1wvdtzz9rowfw8.png)
Where r = 8, θ = 41.8 degrees
Firstly, Angle in Radians
=> 41.8 degrees = 0.73 radians
So,
Area of Sector AOB =
![(1)/(2) (8)^2 (0.73)](https://img.qammunity.org/2021/formulas/mathematics/high-school/tgkgb0hznz78cdpv6cmbluu3y4vd9qq61m.png)
Area of Sector AOB =
![(1)/(2) (64)(0.73)](https://img.qammunity.org/2021/formulas/mathematics/high-school/1qygge56mixdng3phd9dizqiogdcvespvf.png)
Area of Sector AOB = 23.3 units²
b) Finding the length of minor arc AB
So,
Arc Length = Radius ×
![\theta](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xa55iai8ybj0afnpxzra0ba7b2i6zcastf.png)
Where Radius = 8,
= 0.73 radians
Arc Length AB = 8 * 0.73
Arc Length = 5.84 units