Answer:
39896 miles will be traveled by at least 80% of the trucks
Explanation:
Given that :
the mean
= 50000
standard deviation
= 12000
we are to calculate how many miles will be traveled by at least 80% of the trucks.
This implies that :
![P(X > x_o) = 0.8](https://img.qammunity.org/2021/formulas/mathematics/college/13e9ep8u9qusyoash4pq2ggdahc8epm9tv.png)
Likewise;
![P(X < x_o) = 1- P(X > x_o)](https://img.qammunity.org/2021/formulas/mathematics/college/l19j2ld1ckqg528pgm5bzkfw3fseset85k.png)
![P(X < x_o) = 1-0.8](https://img.qammunity.org/2021/formulas/mathematics/college/1e402375qoo860nqrfm2kjay0ypd4wyap4.png)
![P(X < x_o) = 0.2](https://img.qammunity.org/2021/formulas/mathematics/college/34hjsuqgbg7ai0z2qtffcoer3tpkyrrve0.png)
We all know that
![z = (X- \mu)/(\sigma)](https://img.qammunity.org/2021/formulas/mathematics/college/dceqix3ivy4q7dvd2kfnw3ut11ghr6kqu2.png)
![P((X- \mu)/(\sigma)< (x_o - \mu )/(\sigma)) = 0.2](https://img.qammunity.org/2021/formulas/mathematics/college/fhm4mxg0w0hleijqtr5iykvxwr4kat3syd.png)
![P({z < (x_o - \mu )/(\sigma)) = 0.2](https://img.qammunity.org/2021/formulas/mathematics/college/19fh51yu0piujnh8w083ann31niyeg5bgh.png)
Using the z table to determine the value for (invNorm (0.2)); we have ;
![(x_o - \mu )/(\sigma) = invNorm (0.2)](https://img.qammunity.org/2021/formulas/mathematics/college/jsnnl7km59rui3rt0hqc6oq791n3xwlzpz.png)
![{x_o - \mu } = {\sigma} * invNorm (0.2)](https://img.qammunity.org/2021/formulas/mathematics/college/li57w0g68ruhcl7e2feuc2rntysdfyrlkn.png)
![{x_o } = \mu + {\sigma} * invNorm (0.2)](https://img.qammunity.org/2021/formulas/mathematics/college/owfz0wc2s9f32rx48xomwbbodj6lmk1vaj.png)
From z tables;
![invNorm (0.2)= -0.842](https://img.qammunity.org/2021/formulas/mathematics/college/2oyn4oyr2p2x7b7h8u2h32py5508dsofgs.png)
![{x_o } = 50000 + 12000 *(-0.842)](https://img.qammunity.org/2021/formulas/mathematics/college/gktu95eyhpers7657dd67pxrr82oh5v9bk.png)
![{x_o } = 50000 -10104](https://img.qammunity.org/2021/formulas/mathematics/college/b2x1ycq99xbsgdw92dfmas0ncq67cflkwz.png)
![\mathbf{{x_o } =39896}](https://img.qammunity.org/2021/formulas/mathematics/college/ntbd7104vao3b5cch49hz2mszekdzc0pai.png)
Thus; 39896 miles will be traveled by at least 80% of the trucks