Answer:
![y^{ (3)/(2)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/lt9dcztchhw63nhqrh5cw4isjww0icscq0.png)
Explanation:
From the question posted, you've already initiated the solution but you applied a wrong approach;
Given
![y^{(4)/(3)} . y^{(2)/(3) - (1)/(2)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/c6nd8z3y57j4fa12v0wfxsrfopf2uwdclq.png)
Required
Simplify; using power property
Power property states that;
![a^m.a^n = a^(m+n)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/45bfw6csoib1mask3d6kbtyw1qf3l4innt.png)
![a^m/a^n = a^(m-n)](https://img.qammunity.org/2021/formulas/mathematics/high-school/5vnikt4qjkwsuggjosnt7k5t52vkyj1cnm.png)
By comparison; we have to apply the first property;
This is shown below;
![y^{(4)/(3)+(2)/(3) - (1)/(2)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/q8s2nxxqkrzpqogzq1zpg9k7ej1r8eafhk.png)
Add fraction of the same numerator
![y^{(4+2)/(3) - (1)/(2)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/3n7920iucxn6uxvuor0p3yn930f9uzyjgt.png)
![y^{(6)/(3) - (1)/(2)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/t7t64d68qhn9tnrhph6vphuo0xndk4whci.png)
![y^{2 - (1)/(2)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/aeu86ddiok9mpxqx5k98asxrijq9tfbsnt.png)
Subtract fraction
![y^{ (4-1)/(2)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/wv3n9gast3a8zahfbxauzdwqy1yfze8tyb.png)
![y^{ (3)/(2)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/lt9dcztchhw63nhqrh5cw4isjww0icscq0.png)
The expression
is equivalent to
![y^{ (3)/(2)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/lt9dcztchhw63nhqrh5cw4isjww0icscq0.png)