Answer:
The answer to this question can be defined as follows:
Step-by-step explanation:
The risk-free rate of T-bill is (r f), which is 4.4% = 0.044. The fund for stocks (S) An expected 14% = 0.14 return and the value of the standard deviation is 34% = 0.34. The Announcement fund of (B) and the estimated 5% = 0.05 return, with a standard deviation 28% = 0.28 .
following are the formula for the equation is:
![E(R)=E(r)-r_f \ \ \ \ \ \ \ \ \ \ \ \ where, \\\\E(R)= \ Expected \ return\\E (r) = \ Expected \ return \ on \ stock \\(r_f)= \ Risk-free \ rate](https://img.qammunity.org/2021/formulas/business/college/gqrywuk2bt5l1ofzy3n2ztj3m0wlsivwfe.png)
Using the formula to measure the projected return for bond and stock fund:
![E(R_s)=E(r_s)-r_f\\](https://img.qammunity.org/2021/formulas/business/college/4za4z498paqztwi39gbr61stid099f8m0e.png)
![=0.14-0.044\\ =0.096\\](https://img.qammunity.org/2021/formulas/business/college/yrl7jzvmsadl0sihovuyfcm9tv0s7isknk.png)
![E(R_B)=E(r_B)-r_f](https://img.qammunity.org/2021/formulas/business/college/3zb1n99hfygoczz2wt8pd2h8n1v9d8y3w0.png)
![= 0.05-0.044\\= 0.006](https://img.qammunity.org/2021/formulas/business/college/cmnpoplfi4r54ygrjbeit8hm3zrigidy6o.png)
Measure mass with optimized risk for stock index fund (S) and Bond Fund (B), Introduce to investment as follows:
![W_s=(E(R_s)\sigma_(B)^2-E(R_B) Cov(r_s,r_s))/(E(R_s)\sigma_B^2+E(R_B)\sigma_s^2-[E(R_s)+E(R_s)]Cov(r_s,r_s))](https://img.qammunity.org/2021/formulas/business/college/5e3et91iqir1jzizyat03tpyszozn4xlvo.png)
![W_s = \ Stock \ Fund \ weight \\ W_B = \ Bond \ Fund \ weight \\](https://img.qammunity.org/2021/formulas/business/college/w8d5rcg4tdwwy5uwwv7izcdk5aoxk99q54.png)
![\sigma_s](https://img.qammunity.org/2021/formulas/business/college/aaxv7u56qk71fv4ekq7bj8g0n4cz96mhnf.png)
![= \ de fault \ stock \ found \ variance\\](https://img.qammunity.org/2021/formulas/business/college/c9urtpu2wyz2ce9y498nfjz7kw6gi0wtt9.png)
![\sigma_(B)= \ Bond \ Fund \ standard \ deviation \\r_s = \ Stock \ fund \ planned \ return \\r_B = \ Bond \ fund's \ projected \ return\\ Cov(r_s, r_B)= \ Pension \ and \ bond \ fund \ covariance\\](https://img.qammunity.org/2021/formulas/business/college/6r2u8qk1q3vs9m00ox1wcoaac1sq9qumhr.png)
Measure the portfolio and bond fund covariance according to:
Bond and equity fund covariance
![= 0.14 * 0.34 * 0.28\\= 0.013328\\](https://img.qammunity.org/2021/formulas/business/college/630oaepw9yrstikmwcozkb6k864p6zghj3.png)
Measure the mass of the stock and bond fund as follows:
![W_s=(E(R_s)\sigma_(B)^2-E(R_B) Cov(r_s,r_s))/(E(R_s)\sigma_B^2+E(R_B)\sigma_s^2-[E(R_s)+E(R_s)]Cov(r_s,r_s))](https://img.qammunity.org/2021/formulas/business/college/5e3et91iqir1jzizyat03tpyszozn4xlvo.png)
![=(0.096 * 0.28^2-0.006* 0.013328)/(0.096 * 0.28^2+0.006* 0.34^2-[0.096+0.006]* 0.013328)](https://img.qammunity.org/2021/formulas/business/college/byyfr91amssd3m127fe1jd7uuk70yi80ae.png)
![=(0.0075264-0.000079968)/(0.0075264+0.0006936-0.001359456)\\\\=(0.007446432)/(0.006860544)\\\\=1.085\\](https://img.qammunity.org/2021/formulas/business/college/vu7hnbp9zpb7ks23qj39ie0i2ap5vb4c0u.png)
![W_B=1-W_s\\\\](https://img.qammunity.org/2021/formulas/business/college/4rkc3npo0lqjuf2mt0frvwamb1p4b81okb.png)
![=1-1.085\\\\=-0.85](https://img.qammunity.org/2021/formulas/business/college/wocvzs7hidpnrvndzho28up50o7alut45r.png)
The correspondence(p) here is 0.14. Calculate the norm for the maximum risky as follows:
![\ deviation \ of \ portfolio \ =√((W_s)^2 (\sigma_s)^2+(W_B)^2 (\sigma_B)^2+ 2(W_s)(W_B)(\sigma_s) (\sigma_B) (P))](https://img.qammunity.org/2021/formulas/business/college/c5q05kjveps5uyfaqkycmhpmetu2hltyw1.png)
![=√((1.05)^2 (0.34)^2+(-0.0854)^2 (0.28)^2+ 2(1.0854)(-0.0854)(0.34) (0.28) (0.14))\\=√(0.13428852416704)\\=0.366453986\\=36.65%](https://img.qammunity.org/2021/formulas/business/college/w52t447iikw88r7kp0lc32dv5ck1roxif4.png)
The standard deviation for the optimal risky portfolio is 36.65%
![\ Expected \ return \ portfolio = (\ mass \ of \ stock \ found * \ expected \ return \ on\ stock)+ ( mass \ of \ bond\ found * \ expected \ return \ on\ bond)](https://img.qammunity.org/2021/formulas/business/college/l7anytplqtzm8ikh33xjzf81b81dg33rfw.png)
![=(1.085* 0.14)+(-0.0854 * 0.05)\\= 0.151956-0.00427\\=0.1477\\=14.77%\\](https://img.qammunity.org/2021/formulas/business/college/to8dmti8ni66lp95o0rdblemqfjgnfv98r.png)
The optimal risk portfolio is 14.77%