Answer: a. Ln =
![(1)/(2) (L_(n-1) + L_(n-2))](https://img.qammunity.org/2021/formulas/mathematics/college/1dylgwtio6ur3hzwfxlnm83ytq27d2o8tn.png)
b.
![L_(n) = 233333.4(1)^(n)+266666.7(-(1)/(2) )^(n)](https://img.qammunity.org/2021/formulas/mathematics/college/fgoepc30mteqziaaq34tpm0uqcypsryh5o.png)
Explanation: Recurrence Relation is a polynomial that relates a term in a sequence with its previous terms.
a. The number of lobster is the average of two previous years. Average is the sum of the elements of a set divided by the total number of the set, so for Ln:
Ln =
=
![(1)/(2)(L_(n-1)+L_(n-2))](https://img.qammunity.org/2021/formulas/mathematics/college/bag8luhtg6jn4opy47rviq7reiqtq1knfa.png)
where
are the two previous years.
b) Ln =
![(1)/(2)(L_(n-1)+L_(n-2))](https://img.qammunity.org/2021/formulas/mathematics/college/bag8luhtg6jn4opy47rviq7reiqtq1knfa.png)
![(1)/(2)(L_(n-1))+(1)/(2) (L_(n-2)) - L_(n) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/t41ruh47l4oh82y3mzxe09bnyrarzpzsbu.png)
To solve this recurrence, find the characteristic polynomial:
![r^(2) - (1)/(2)r - (1)/(2) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/tgecfnwr5u72zbtp6q77pln0qehiaq713j.png)
Solve for r:
The polynomial can be rewritten as:
![(r-1)(r+(1)/(2) )=0](https://img.qammunity.org/2021/formulas/mathematics/college/npe0vhxiie0w5wlhqwpjc7xli0abvssgq7.png)
so, r = 1 and r = -1/2
The expression for the recurrence relation will be:
![L_(n) = \alpha_(1) .(1)^(n) + \alpha_(2).(-(1)/(2) )^(n)](https://img.qammunity.org/2021/formulas/mathematics/college/3ll1pc4098pqzn7vfmozzkxoaasuxegl9v.png)
In year 1, there were 100,000 lobsters, so, when n=1:
In year 2, when n=2, Ln = 300,000:
Solving the system of equations:
![\alpha_(1) .(1)^(1) + \alpha_(2).(-(1)/(2) )^(1) = 100,000](https://img.qammunity.org/2021/formulas/mathematics/college/qymd0cirrr16jpsiu1ksw3qch5fcktbpjx.png)
![\alpha_(1) = 300,000 - (1)/(4).\alpha_(2)](https://img.qammunity.org/2021/formulas/mathematics/college/oqjcvch0g2zodpc5vgfaw8vy7zth3cp2hc.png)
Finding
:
![100,000+(1)/(2).\alpha_(2) = 300,000 - (1)/(4).\alpha_(2)](https://img.qammunity.org/2021/formulas/mathematics/college/wa56xakgl3h8qv642i04nl4tecewu0xyed.png)
![(3)/(4).\alpha_(2) = 200,000](https://img.qammunity.org/2021/formulas/mathematics/college/ch8ua1y3nqeg5tg22gzztfvtjl286itg70.png)
266666.7
With
, plug in an equation to find
:
![\alpha_(1) = 100,000 + (266666.7)/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/ild5afc23bfenhqvhref0cp1g3fe7hsw1r.png)
233333.4
The solved equation for this recurrence relation is:
![L_(n) = 233333.4(1)^(n) + 266666.7(-(1)/(2))^(n)](https://img.qammunity.org/2021/formulas/mathematics/college/je7gbwezd3yvdmpk0dlydgcifyq3ldu6nm.png)