Answer:
![((2a + 1)^2)/(50a)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/n8p8kt4okxmjua2znm986jaki5ojqcxut6.png)
Explanation:
Given
![(2a + 1)/(10a - 5) / (10a)/(4a^2 - 1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/wh2b99zmkrb6ay8i0u06llinmqz7tlq5si.png)
Required
Find the equivalent
We start by changing the / to *
![(2a + 1)/(10a - 5) / (10a)/(4a^2 - 1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/wh2b99zmkrb6ay8i0u06llinmqz7tlq5si.png)
![(2a + 1)/(10a - 5) * (4a^2 - 1)/(10a)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ovp99kst09yvihczyjj7trthp2lk0ya42x.png)
Factorize 10a - 5
![(2a + 1)/(5(2a - 1)) * (4a^2 - 1)/(10a)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/kgfcd6c4opgmq5gdudqfg4zpcq9quty7ur.png)
Expand 4a² - 1
![(2a + 1)/(5(2a - 1)) * ((2a)^2 - 1)/(10a)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/9swydq9mx96nxrmtztchlmfefxekqrimkz.png)
![(2a + 1)/(5(2a - 1)) * ((2a)^2 - 1^2)/(10a)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/77iscwnnmjac9y1ujy7oogwiybg9qvu04v.png)
Express (2a)² - 1² as a difference of two squares
Difference of two squares is such that:
![a^2- b^2= (a+b)(a-b)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/bxelfxn8f57hun5sqonos32l7mym84f5qo.png)
The expression becomes
![(2a + 1)/(5(2a - 1)) * ((2a - 1)(2a + 1))/(10a)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/mn0rbr1mdi7l8fmgonexoiudwfe7363k2s.png)
Combine both fractions to form a single fraction
![((2a + 1)(2a - 1)(2a + 1))/(5(2a - 1)10a)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/9m6uprved8xbmqws57hq9fk1vfw932bmol.png)
Divide the numerator and denominator by 2a - 1
![((2a + 1)((2a + 1))/(5*10a)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/7pzy2we9e2w87bkjik257kmxtotl1jvk44.png)
Simplify the numerator
![((2a + 1)^2)/(5*10a)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/92j2uor92j6cffbsvcbidzqxtjese4xgtc.png)
![((2a + 1)^2)/(50a)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/n8p8kt4okxmjua2znm986jaki5ojqcxut6.png)
Hence,
=
![((2a + 1)^2)/(50a)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/n8p8kt4okxmjua2znm986jaki5ojqcxut6.png)