68.4k views
5 votes
Which expression is equivalent to StartFraction 2 a + 1 Over 10 a minus 5 Endfraction divided by StartFraction 10 a Over 4 a squared minus 1 EndFraction?

User Pauxu
by
4.9k points

2 Answers

4 votes

Answer:

D

Explanation:

edge 2020

User SuperGoTeam
by
5.4k points
3 votes

Answer:


((2a + 1)^2)/(50a)

Explanation:

Given


(2a + 1)/(10a - 5) / (10a)/(4a^2 - 1)

Required

Find the equivalent

We start by changing the / to *


(2a + 1)/(10a - 5) / (10a)/(4a^2 - 1)


(2a + 1)/(10a - 5) * (4a^2 - 1)/(10a)

Factorize 10a - 5


(2a + 1)/(5(2a - 1)) * (4a^2 - 1)/(10a)

Expand 4a² - 1


(2a + 1)/(5(2a - 1)) * ((2a)^2 - 1)/(10a)


(2a + 1)/(5(2a - 1)) * ((2a)^2 - 1^2)/(10a)

Express (2a)² - 1² as a difference of two squares

Difference of two squares is such that:
a^2- b^2= (a+b)(a-b)

The expression becomes


(2a + 1)/(5(2a - 1)) * ((2a - 1)(2a + 1))/(10a)

Combine both fractions to form a single fraction


((2a + 1)(2a - 1)(2a + 1))/(5(2a - 1)10a)

Divide the numerator and denominator by 2a - 1


((2a + 1)((2a + 1))/(5*10a)

Simplify the numerator


((2a + 1)^2)/(5*10a)


((2a + 1)^2)/(50a)

Hence,


(2a + 1)/(10a - 5) / (10a)/(4a^2 - 1) =
((2a + 1)^2)/(50a)

User Hugom
by
5.2k points