192k views
5 votes
Help me please !!!

Use the quadratic formula to complete the table. 3x^2+4x+4=0
3x^2+2x+4=0
9x^2-6x+2=0
Value of Discriminant and Solutions

Help me please !!! Use the quadratic formula to complete the table. 3x^2+4x+4=0 3x-example-1
User Jinah Adam
by
8.9k points

2 Answers

5 votes

Answer:

equation: 3x²+4x+4=0 value: -32 solutions: -2±2i√2 / 3

equation: 3x²+2x+4=0 value: -44 solutions: -1±i√11 / 3

equation: 9x²−6x+2=0 value: -36 solutions: 1±i / 3

Help me please !!! Use the quadratic formula to complete the table. 3x^2+4x+4=0 3x-example-1
User Carson Myers
by
8.1k points
3 votes

Answer:

For 3x^2+4x+4=0

Discriminant= = -32

The solutions are

(-b+√x)/2a= (-2+2√-2)/3

(-b-√x)/2a= (-2-2√-2)/3

For 3x^2+2x+4=0

Discriminant= -44

The solutions

(-b+√x)/2a= (-1+√-11)/3

(-b-√x)/2a= (-1-√-11)/3

For 9x^2-6x+2=0

Discriminant= -36

The solutions

(-b+√x)/2a= (1+√-1)/3

(-b-√x)/2a= (1-√-1)/3

Explanation:

Formula for the discriminant = b²-4ac

let the discriminant be = x for the equations

The solution of the equations

= (-b+√x)/2a and = (-b-√x)/2a

For 3x^2+4x+4=0

Discriminant= 4²-4(3)(4)

Discriminant= 16-48

Discriminant= = -32

The solutions

(-b+√x)/2a =( -4+√-32)/6

(-b+√x)/2a= (-4 +4√-2)/6

(-b+√x)/2a= (-2+2√-2)/3

(-b-√x)/2a =( -4-√-32)/6

(-b-√x)/2a= (-4 -4√-2)/6

(-b-√x)/2a= (-2-2√-2)/3

For 3x^2+2x+4=0

Discriminant= 2²-4(3)(4)

Discriminant= 4-48

Discriminant= -44

The solutions

(-b+√x)/2a =( -2+√-44)/6

(-b+√x)/2a= (-2 +2√-11)/6

(-b+√x)/2a= (-1+√-11)/3

(-b-√x)/2a =( -2-√-44)/6

(-b-√x)/2a= (-2 -2√-11)/6

(-b-√x)/2a= (-1-√-11)/3

For 9x^2-6x+2=0

Discriminant= (-6)²-4(9)(2)

Discriminant= 36 -72

Discriminant= -36

The solutions

(-b+√x)/2a =( 6+√-36)/18

(-b+√x)/2a= (6 +6√-1)/18

(-b+√x)/2a= (1+√-1)/3

(-b-√x)/2a =( 6-√-36)/18

(-b-√x)/2a= (6 -6√-1)/18

(-b-√x)/2a= (1-√-1)/3

User Akshay Pawar
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories