Answer:
The answer is given below
Step-by-step explanation:
The question is not complete. Given that:
, ρ = 0.1560
From the covariance matrix, Cov (B, S) =
![\rho*\sigma_b*\sigma_s=0..1560*33*25=128.7](https://img.qammunity.org/2021/formulas/business/college/cnipfirel59wiqz1gqnq4f56j2z0xv0dlr.png)
The minimum-variance portfolio is gotten using the formula:
![w_(min)(S)=(\sigma_B^2-Cov(B,S))/(\sigma_S^2+\sigma_B^2-2Cov(B,S))=((25^2)-128.7)/(33^2+25^2-2(128.7))=(625-128.7)/(225+1089-257.4)=0.4697\\\\w_(min)(B)=(\sigma_S^2-Cov(B,S))/(\sigma_S^2+\sigma_B^2-2Cov(B,S))=((33^2)-128.7)/(33^2+25^2-2(128.7))=(1089-128.7)/(225+1089-257.4)=0.9089](https://img.qammunity.org/2021/formulas/business/college/3wfavn7grsglqz3z6tm374yr4q8rai2ysn.png)
the expected return for the minimum-variance portfolio is:
![E(r_(min))=w_(min)S*E(r_s)+w_(min)B*E(r_b)=11*0.4697+0.9089*8=12.44\%](https://img.qammunity.org/2021/formulas/business/college/jr81xa6s30fa4tlozh9y5gpl0c4xedu8dv.png)
the standard deviation for the minimum-variance portfolio is:
![\sigma_(min)=[w_S^2\sigma_s^2+w_B^2\sigma_B^2+2w_Bw_SCov(B,S)]^(1)/(2) =[0.4687^2*33^2+0.9089^2*25^2+2*0.9089*0.4687*128.7]^(1)/(2)=29.41\%](https://img.qammunity.org/2021/formulas/business/college/c4535nlpm7ee71v3l4cc8t5rpg6ot77yuk.png)