Expand everything in the limit:
![\displaystyle\lim_(h\to0)\frac{(-7+h)^2-49}h=\lim_(h\to0)\frac{(49-14h+h^2)-49}h=\lim_(h\to0)\frac{h^2-14h}h](https://img.qammunity.org/2021/formulas/mathematics/college/jfzw7hj3qheb3iszgr92jsydfzpxse1qhw.png)
We have
approaching 0, and in particular
, so we can cancel a factor in the numerator and denominator:
![\displaystyle\lim_(h\to0)\frac{h^2-14h}h=\lim_(h\to0)(h-14)=\boxed{-14}](https://img.qammunity.org/2021/formulas/mathematics/college/raesd97vpy7oz6af1zh5axvoxp6l82az4u.png)
Alternatively, if you already know about derivatives, consider the function
, whose derivative is
.
Using the limit definition, we have
![f'(x)=\displaystyle\lim_(h\to0)\frac{f(x+h)-f(x)}h=\lim_(h\to0)\frac{(x+h)^2-x^2}h](https://img.qammunity.org/2021/formulas/mathematics/college/qj1io0c47pk1af1ei4240ptsg58x7bmff7.png)
which is exactly the original limit with
. The derivative is
, so the value of the limit is, again, -14.