Answer:
Correct option: B. 90%
Step-by-step explanation:
The confidence interval is given by:
![CI = [\bar{x} - z\sigma_{\bar{x}} , \bar{x}+z\sigma_{\bar{x}} ]](https://img.qammunity.org/2021/formulas/engineering/college/ugc5ibfx7j7t194vfts240rpg6q3uu5717.png)
If
is 190, we can find the value of
:
![\bar{x} - z\sigma_{\bar{x}} = 188.29](https://img.qammunity.org/2021/formulas/engineering/college/fve6okg0422sm5uo8no1504dddnasltjoj.png)
![190 - z\sigma_{\bar{x}} = 188.29](https://img.qammunity.org/2021/formulas/engineering/college/bjzel5pvz7kpk6l2egrbh464ww2e7s2g1i.png)
![z\sigma_{\bar{x}} = 1.71](https://img.qammunity.org/2021/formulas/engineering/college/4evc38lvy3vtfjprwxtm6ptxr7kwg8uk4k.png)
Now we need to find the value of
:
![\sigma_{\bar{x}} = 5/ √(25)](https://img.qammunity.org/2021/formulas/engineering/college/dxuh47i48ndkann9tohk8uwxi62mmijpp6.png)
![\sigma_{\bar{x}} = 1](https://img.qammunity.org/2021/formulas/mathematics/college/ns2y6phffqb6x0eex8jvpgu1xadbg4odz3.png)
So the value of z is 1.71.
Looking at the z-table, the z value that gives a z-score of 1.71 is 0.0436
This value will occur in both sides of the normal curve, so the confidence level is:
![CI = 1 - 2*0.0436 = 0.9128 = 91.28\%](https://img.qammunity.org/2021/formulas/engineering/college/xcgxddl0iovt6pk7v5vda1jyvctzpry0qn.png)
The nearest CI in the options is 90%, so the correct option is B.