73.7k views
1 vote
Solve the system by using the inverse of the coefficient matrix. -3x + 9y = 9 3x + 2y = 13 Group of answer choices

User Gkrishy
by
3.3k points

1 Answer

4 votes

Answer:

x= 3

y=2

Explanation:

-3x + 9y = 9 ----------- equation 1

3x + 2y = 13--------------- equation 2

In Matrix Form


\left[\begin{array}{cc}-3&9\\3&2\end{array}\right] \left[\begin{array}{c}x\\y\end{array}\right] = \left[\begin{array}{c}9\\13\end{array}\right]

Let A =
\left[\begin{array}{cc}-3&9\\3&2\end{array}\right] X =
\left[\begin{array}{c}x\\y\end{array}\right] and B =
\left[\begin{array}{c}9\\13\end{array}\right]

Then Mathematically AX= B

or X= A⁻¹ B

Where A⁻¹ = Adjacent A/ mod of A

Adjacent A =
\left[\begin{array}{cc}2&-9\\-3&-3\end{array}\right]

Mod Of A= -6 - (27) = -33 which is not equal to zero

so Putting These values in the given formula

X= 1/-33
\left[\begin{array}{cc}2&-9\\-3&-3\end{array}\right]
\left[\begin{array}{c}9\\13\end{array}\right]

Now Multiplying Rows and Columns


\left[\begin{array}{c}x\\y\end{array}\right] = -1/33
\left[\begin{array}{cc}2*9+- 9*13\\-3*9 +- 3*13\end{array}\right]

Solving the Matrix we get


\left[\begin{array}{c}x\\y\end{array}\right] = -1/33
\left[\begin{array}{cc}18-117\\-27-39\\\end{array}\right]


\left[\begin{array}{c}x\\y\end{array}\right] = -1/33
\left[\begin{array}{cc}-99\\-66\end{array}\right]

From Here we find x= 99/33 or 3

and y = 66/33= 2

User Olafur Tryggvason
by
3.7k points