Answer:
Length = 29 m
Width = 29 m
Explanation:
Let x and y be the length and width of the rectangle, respectively.
The area and perimeter are given by:
![A=xy\\p=116=2x+2y\\y=58-x](https://img.qammunity.org/2021/formulas/mathematics/college/jubvk028xpuledvcxnwk64aefxozfu00wq.png)
Rewriting the area as a function of x:
![A(x) = x(58-x)\\A(x) = 58x-x^2](https://img.qammunity.org/2021/formulas/mathematics/college/n7vl87gm6550x111cpoy70d815s3zwmkko.png)
The value of x for which the derivate of the area function is zero, is the length that maximizes the area:
![A(x) = 58x-x^2\\(dA)/(dx)=0=58-2x\\ x=29\ m](https://img.qammunity.org/2021/formulas/mathematics/college/na8za4ysd21avayh4bif4c3wdte1kmwjb7.png)
The value of y is:
![y = 58-29\\y=29\ m](https://img.qammunity.org/2021/formulas/mathematics/college/tkaf9bxsxa98oglvzj3un7io37xk78990r.png)
Length = 29 m
Width = 29 m