141k views
2 votes
If you're swimming underwater and knock two rocks together, you will hear a very loud noise. But if your friend above the water knocks two rocks together, you'll barely hear the sound.

Match the words.

The air-water interface is an example of boundary. The( )portion of the initial wave energy is way smaller than the( )portion. This makes the( ) wave hard to hear.

When both the source of the sound and your ears are located underwater, the sound is louder because the sound waves can( ) .

1. reflect more efficiently
2. transmitted
3. travel directly to your ears
4. boundary
5. reflected
6. discontinuity

2 Answers

3 votes

Answer: The air-water interface is an example of boundary. The (transmitted) portion of the initial wave is way smaller than the (reflected) portion. This makes the (transmitted) wave hard to hear.

When both the source of the sound and your ears are located underwater, the sound is louder because the sound waves can (travel directly to your ears.)

Step-by-step explanation:

The part of the sound wave that is transmitted across the boundary between air and water is much smaller than the part of the wave that is reflected. This is what makes it hard to hear your friend knocking two rocks together above the surface.

When you and the rocks are underwater, the sound that comes from knocking the rocks together can travel directly to your ears rather than having to be transmitted across mediums.

User Gruuuvy
by
4.0k points
6 votes

Answer:

The air-water interface is an example of boundary. The transmitted portion of the initial wave energy is way smaller than the reflected portion. This makes the boundary wave hard to hear.

When both the source of the sound and your ears are located underwater, the sound is louder because the sound waves can travel directly to your ear.

Step-by-step explanation:

The air-to-water sound wave transmission is inhibited because more of reflection than transmission of the wave occurs at the boundary. In the end, only about 30% of the sound wave eventually reaches underwater. For sound generated underwater, all the wave energy is transmitted directly to the observer. Sound wave travel faster in water than in air because, the molecules of water are more densely packed together, and hence can easily transmit their vibration to their neighboring molecules, when compared to air.

User Hermann Hans
by
4.7k points