97.0k views
1 vote
DESDE LA PARTE ALTA DE UN MURO DE 8M DE ALTURA SE OBSERVA LAS PARTE BAJA Y ALTA DE UN EDIFICIO CON ANGULOS DE ELEVACION Y DEPRESION DE 37 Y 45 RESPECTIVAMENTE. CALCULA LA ALTURA DEL EDIFICIO A.18 B.14 C.12 D.24 E.16

User Carlpett
by
4.8k points

1 Answer

1 vote

Answer:

The height of the building is approximately 18 meters.

Explanation:

The question is:

FROM THE HIGH PART OF A WALL OF 8M HEIGHT, YOU CAN SEE THE LOW AND HIGH PART OF A BUILDING WITH ELEVATION AND DEPRESSION ANGLES OF 37° AND 45° RESPECTIVELY. CALCULATE THE HEIGHT OF THE BUILDING A.18 B.14 C.12 D.24 E.16

Solution:

Consider the diagram below.

Consider the triangle ABC.

Compute the value of y as follows:


tan\ 37^(o)=(AB)/(BC)


0.754=(8)/(y)


y=(8)/(0.754)


=10.61\\\approx 11

Thus, the length of side AD is also 11 meters.

Now consider the triangle AED.

Compute the value of x as follows:


tan\ 45^(o)=(AE)/(ED)


1=(11)/(x)


x=11

Then the height of the building is:


\text{Height of the Building}=x+8


=11+8\\=19

From the options provided it can be concluded that the height of the building is approximately 18 meters.

DESDE LA PARTE ALTA DE UN MURO DE 8M DE ALTURA SE OBSERVA LAS PARTE BAJA Y ALTA DE-example-1
User Suraj Mirajkar
by
5.1k points