93.7k views
5 votes
What are the solutions to the nonlinear system of equations below?
Check all that apply.

What are the solutions to the nonlinear system of equations below? Check all that-example-1

2 Answers

5 votes

Answer:

(-4,0) and (4,0)

Option C and Option F are the right options.

solution,


{x}^(2) + {y}^(2) = 16......(equation \: i) \\ \frac{ {x}^(2) }{ {4}^(2) } - \frac{ {y}^(2) }{ {4}^(2) } = 16......( \: equation \: ii) \\ from \: equation \: ii \\ \frac{ {x}^(2) }{ {4}^(2) } - \frac{ {y}^(2) }{ {4}^(2) } = 1 \\ \frac{ {x}^(2) - {y}^(2) }{ {4}^(2) } = 1 \\ \frac{ {x}^(2) - {y}^(2) }{16} = 1 \\ {x}^(2) - {y}^(2) = 16......... \: equation \: iii \\ now \: adding \: equation \: i \: and \: ii \\ {x}^(2) + {y}^(2) = 16 \\ {x}^(2) - {y}^(2) = 16 \\ ...................... \\ 2 {x}^(2) = 32 \\ or \: {x}^(2) = (32)/(2) \\ or \: {x}^(2) = 16 \\ or \: x = √(16) \\ or \: x = \sqrt{ {(4)}^(2) } \: \: \: or \: \: \sqrt{ {( - 4)}^(2) } \\ x = + 4 \: or \: - 4

Now

When X=4,


{y}^(2) = 16 - {x}^(2) \\ {y}^(2) = 16 - {4}^(2) \\ {y}^(2) = 16 - 16 \\ {y = 0}^(2) \\ y = \sqrt{ {(0)}^(2) } \\ y = 0

When X=-4,


{y}^(2) = 16 - {x}^(2) \\ {y}^(2) = 16 - {( - 4)}^(2) \\ {y}^(2) = 16 - 16 \\ {y}^(2) = 0 \\ y = \sqrt{ {(0)}^(2) } \\ y = 0

The solutions are (4,0) and (-4,0)

Hope this helps...

good luck on your assignment..

User Kyte
by
8.3k points
3 votes

Answer:

C and F

Explanation:

x² + y² = 16 ------------------(I)


(x^(2))/(4^(2))-(y^(2))/(4^(2))=1\\\\x^(2)-y^(2)=4^(2)

x² - y² = 16 ---------------(I)

(I) x² + y² = 16

(I) x² - y² = 16 {add & y² will be eliminated}

2x² = 32

x² = 32/2

x² = 16

x = √16

x = ±4

When x = 4,

4² + y² = 16

16 + y² = 16

y² = 16 - 16

y² = 0

y = 0

(4,0) is a solution

When x = -4,

(-4)² + y² = 16

16 + y² = 16

y² = 16 - 16

y² = 0

y = 0

(-4, 0 ) is a solution

User Naama Katiee
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories