Answer:
![\bar X = (\sum_(i=1)^n X_i)/(n)](https://img.qammunity.org/2021/formulas/mathematics/college/ns1mchdnk6shlvnixd6eiunff164m4m06k.png)
And replacing we got:
![\bar X= 38.91](https://img.qammunity.org/2021/formulas/mathematics/college/mm5pvxz1du46psiepv8wknxe40ovmofcdj.png)
And we can find the bias with this formula:
![Bias= \bar X -\mu](https://img.qammunity.org/2021/formulas/mathematics/college/ykavpo0ysaerlv7rkyrg4uogrrh11dcnhq.png)
And replacing we got:
![Bias = 38.91 -40 = -1.09](https://img.qammunity.org/2021/formulas/mathematics/college/kzb0l2q2mit9iu050fjstfwn1zqtubo73q.png)
Explanation:
For this problem we know that the random variable of interest follows this distribution:
![X \sim N(\mu =40, \sigma= 10)](https://img.qammunity.org/2021/formulas/mathematics/college/9ylg3v4nnvwwdt4pq7ip25irtih6753kex.png)
And we have the following random sample given:
39.2, 45.7, 27.4, 25.9, 25.1, 46.3, 42.9, 49.0, 40.6, 47.0
And we can calculate the sample mean with the following formula:
![\bar X = (\sum_(i=1)^n X_i)/(n)](https://img.qammunity.org/2021/formulas/mathematics/college/ns1mchdnk6shlvnixd6eiunff164m4m06k.png)
And replacing we got:
![\bar X= 38.91](https://img.qammunity.org/2021/formulas/mathematics/college/mm5pvxz1du46psiepv8wknxe40ovmofcdj.png)
And we can find the bias with this formula:
![Bias= \bar X -\mu](https://img.qammunity.org/2021/formulas/mathematics/college/ykavpo0ysaerlv7rkyrg4uogrrh11dcnhq.png)
And replacing we got:
![Bias = 38.91 -40 = -1.09](https://img.qammunity.org/2021/formulas/mathematics/college/kzb0l2q2mit9iu050fjstfwn1zqtubo73q.png)