113k views
0 votes
Find the exact value of each trigonometric function for the given angle θ.

Find the exact value of each trigonometric function for the given angle θ.-example-1
User Pindatjuh
by
8.2k points

1 Answer

6 votes

Answer:


\sin (240^\circ)=-(√(3))/(2),\cos (240^\circ)=-(1)/(2),\tan (240^\circ)=√(3),\cot (240^\circ)=(1)/(√(3)),\sec (240^\circ)=-2,\csc (240^\circ)=(2)/(√(3)).

Explanation:

The given angle is 240 degrees.

We need to find the exact value of each trigonometric function for the given angle θ.

Since
\theta=240, it means θ lies in 3rd quadrant. In 3d quadrant only tan and cot are positive.


\sin (240^\circ)=\sin (180^\circ+60^\circ)=-\sin (60^\circ)=-(√(3))/(2)


\cos (240^\circ)=\cos (180^\circ+60^\circ)=-\cos (60^\circ)=-(1)/(2)


\tan (240^\circ)=\tan (180^\circ+60^\circ)=\tan (60^\circ)=√(3)


\cot (240^\circ)=\cot (180^\circ+60^\circ)=\cot (60^\circ)=(1)/(√(3))


\sec (240^\circ)=\sec (180^\circ+60^\circ)=-\sec (60^\circ)=-2


\csc (240^\circ)=\csc (180^\circ+60^\circ)=-\csc (60^\circ)=-(2)/(√(3))

Therefore,
\sin (240^\circ)=-(√(3))/(2),\cos (240^\circ)=-(1)/(2),\tan (240^\circ)=√(3),\cot (240^\circ)=(1)/(√(3)),\sec (240^\circ)=-2,\csc (240^\circ)=-(2)/(√(3)).

User Sebastien Peek
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories