113k views
0 votes
Find the exact value of each trigonometric function for the given angle θ.

Find the exact value of each trigonometric function for the given angle θ.-example-1
User Pindatjuh
by
5.8k points

1 Answer

6 votes

Answer:


\sin (240^\circ)=-(√(3))/(2),\cos (240^\circ)=-(1)/(2),\tan (240^\circ)=√(3),\cot (240^\circ)=(1)/(√(3)),\sec (240^\circ)=-2,\csc (240^\circ)=(2)/(√(3)).

Explanation:

The given angle is 240 degrees.

We need to find the exact value of each trigonometric function for the given angle θ.

Since
\theta=240, it means θ lies in 3rd quadrant. In 3d quadrant only tan and cot are positive.


\sin (240^\circ)=\sin (180^\circ+60^\circ)=-\sin (60^\circ)=-(√(3))/(2)


\cos (240^\circ)=\cos (180^\circ+60^\circ)=-\cos (60^\circ)=-(1)/(2)


\tan (240^\circ)=\tan (180^\circ+60^\circ)=\tan (60^\circ)=√(3)


\cot (240^\circ)=\cot (180^\circ+60^\circ)=\cot (60^\circ)=(1)/(√(3))


\sec (240^\circ)=\sec (180^\circ+60^\circ)=-\sec (60^\circ)=-2


\csc (240^\circ)=\csc (180^\circ+60^\circ)=-\csc (60^\circ)=-(2)/(√(3))

Therefore,
\sin (240^\circ)=-(√(3))/(2),\cos (240^\circ)=-(1)/(2),\tan (240^\circ)=√(3),\cot (240^\circ)=(1)/(√(3)),\sec (240^\circ)=-2,\csc (240^\circ)=-(2)/(√(3)).

User Sebastien Peek
by
5.2k points