Answer:
C) (-2, 4), (6,8) is the correct answer.
Explanation:
Given that line segment AB:
A (-3, 6) and B (9, 12) is dilated with a scale factor 2/3 about the origin.
First of all, let us calculate the distance AB using the distance formula:
![D = √((x_2-x_1)^2+(y_2-y_1)^2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ugxocyvlsejiaujzymqm4lkywdlt1h565p.png)
Here,
![x_2=9\\x_1=-3\\y_2=12\\y_1=6](https://img.qammunity.org/2021/formulas/mathematics/college/jex7378fs4n1tnqbmy9h4ij3fno5rxdhw2.png)
Putting all the values and finding AB:
![AB = √((9-(-3))^2+(12-6)^2)\\\Rightarrow AB = √((12)^2+(6)^2)\\\Rightarrow AB = √(144+36)\\\Rightarrow AB = √(180)\\\Rightarrow AB = 6√(5)\ units](https://img.qammunity.org/2021/formulas/mathematics/college/qbtzxc0gwldohyk4z93s8vilppmydwha10.png)
It is given that AB is dilated with a scale factor of
.
![x_2'=(2)/(3)* x_2=(2)/(3)*9=6\\x_1'=(2)/(3)* x_1=(2)/(3)*-3=-2\\y_2'=(2)/(3)* y_2=(2)/(3)* 12=8\\y_1'=(2)/(3)* y_1=(2)/(3)* 6=4](https://img.qammunity.org/2021/formulas/mathematics/college/f7fiii7dv4bkcfujfy6y2m3o584u3l0r7f.png)
So, the new coordinates are A'(-2,4) and B'(6,8).
Verifying this by calculating the distance A'B':
![A'B' = √((6-(-2))^2+(8-4)^2)\\\Rightarrow A'B' = √((8)^2+(4)^2)\\\Rightarrow A'B' = √(64+16)\\\Rightarrow A'B' = √(80)\\\Rightarrow A'B' = 4√(5)\ units = (2)/(3)* AB](https://img.qammunity.org/2021/formulas/mathematics/college/osjqnz31rnkna2uc35neg0up2jorf2llzo.png)
So, option C) (-2, 4), (6,8) is the correct answer.