Answer:
The probability that it rains and the bus is late is 1/7
Explanation:
Practically, we can apply the Bayes’ theorem to solve this.
Mathematically, we use the Bayes’ problem as follows;
P( rain| late) = P(rain ^ late)/P(late) = P( late|rain) • P(rain)/[P(late|rain)P(rain) + P(not late|no rain)P(no rain)]
Where P(no rain) = 1-P(rain) = 1-0.4 = 0.6
P(on time) = 1-P(late) = 1-0.2 = 0.8
Kindly recall that P of raining = 0.4 and the probability that the bus is late is 0.2
Substituting these values into the Bayes’ equation above, we have;
P( rain| late) = (0.2)(0.4)/(0.2)(0.4) + (0.8)(0.6)
= 0.08/(0.08 + 0.48) = 0.08/0.56 = 1/7